Abstract

We present a simple theoretical model of and the experimental verification for vanishing of the autocorrelation peak due to wavelength detuning on the coding–decoding process of coherent direct sequence optical code multiple access systems based on a superstructured fiber Bragg grating. Moreover, the detuning vanishing effect has been explored to take advantage of this effect and to provide an additional degree of multiplexing and/or optical code tuning.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Prucnal, M. Santoro, and T. Fan, J. Lightwave Technol. 4, 547 (1986).
    [CrossRef]
  2. P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 227 (2002).
    [CrossRef]
  3. T. Hamanaka, X. Wang, N. Wada, A. Nishiki, and K.-i. Kitayama, J. Lightwave Technol. 24, 98 (2006).
    [CrossRef]
  4. X. Wang and N. Wada, J. Lightwave Technol. 24, 3012 (2006).
    [CrossRef]
  5. P. C. Teh, P. Petropoulos, M. Ibsen, and D J. Richardson, J. Lightwave Technol. 19, 1352 (2001).
    [CrossRef]

2006 (2)

T. Hamanaka, X. Wang, N. Wada, A. Nishiki, and K.-i. Kitayama, J. Lightwave Technol. 24, 98 (2006).
[CrossRef]

X. Wang and N. Wada, J. Lightwave Technol. 24, 3012 (2006).
[CrossRef]

2002 (1)

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 227 (2002).
[CrossRef]

2001 (1)

1986 (1)

P. Prucnal, M. Santoro, and T. Fan, J. Lightwave Technol. 4, 547 (1986).
[CrossRef]

Fan, T.

P. Prucnal, M. Santoro, and T. Fan, J. Lightwave Technol. 4, 547 (1986).
[CrossRef]

Hamanaka, T.

T. Hamanaka, X. Wang, N. Wada, A. Nishiki, and K.-i. Kitayama, J. Lightwave Technol. 24, 98 (2006).
[CrossRef]

Ibsen, M.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 227 (2002).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D J. Richardson, J. Lightwave Technol. 19, 1352 (2001).
[CrossRef]

Kitayama, K.-i.

T. Hamanaka, X. Wang, N. Wada, A. Nishiki, and K.-i. Kitayama, J. Lightwave Technol. 24, 98 (2006).
[CrossRef]

Lee, J. H.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 227 (2002).
[CrossRef]

Nishiki, A.

T. Hamanaka, X. Wang, N. Wada, A. Nishiki, and K.-i. Kitayama, J. Lightwave Technol. 24, 98 (2006).
[CrossRef]

Petropoulos, P.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 227 (2002).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D J. Richardson, J. Lightwave Technol. 19, 1352 (2001).
[CrossRef]

Prucnal, P.

P. Prucnal, M. Santoro, and T. Fan, J. Lightwave Technol. 4, 547 (1986).
[CrossRef]

Richardson, D J.

Richardson, D. J.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 227 (2002).
[CrossRef]

Santoro, M.

P. Prucnal, M. Santoro, and T. Fan, J. Lightwave Technol. 4, 547 (1986).
[CrossRef]

Teh, P. C.

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 227 (2002).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D J. Richardson, J. Lightwave Technol. 19, 1352 (2001).
[CrossRef]

Wada, N.

T. Hamanaka, X. Wang, N. Wada, A. Nishiki, and K.-i. Kitayama, J. Lightwave Technol. 24, 98 (2006).
[CrossRef]

X. Wang and N. Wada, J. Lightwave Technol. 24, 3012 (2006).
[CrossRef]

Wang, X.

X. Wang and N. Wada, J. Lightwave Technol. 24, 3012 (2006).
[CrossRef]

T. Hamanaka, X. Wang, N. Wada, A. Nishiki, and K.-i. Kitayama, J. Lightwave Technol. 24, 98 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 227 (2002).
[CrossRef]

J. Lightwave Technol. (4)

T. Hamanaka, X. Wang, N. Wada, A. Nishiki, and K.-i. Kitayama, J. Lightwave Technol. 24, 98 (2006).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D J. Richardson, J. Lightwave Technol. 19, 1352 (2001).
[CrossRef]

X. Wang and N. Wada, J. Lightwave Technol. 24, 3012 (2006).
[CrossRef]

P. Prucnal, M. Santoro, and T. Fan, J. Lightwave Technol. 4, 547 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Upper part: measured and calculated optical spectra of the SSFBG encoder–decoder ( N = 63 , gold sequence, 0.6 mm chip length). Lower part: normalized autocorrelation peak power efficiency. Measured and theoretical model. Inset: example of encoded and decoded signal.

Fig. 2
Fig. 2

Decoded signal by receiver with decoder tuned to λ 2 proceeding from three different transmitters: (a) transmitter at λ 2 active, (b) transmitter at λ 1 active, (c) transmitter at λ 3 active.

Fig. 3
Fig. 3

Normalized maximum peak-to-peak power detected after decoder scanning in wavelength. Transmitters at λ 1 , λ 2 , and λ 3 (spaced 50 pm ) were activated consecutively. (a), (b), and (c) correspond to the scopes in Fig. 2. Lower part: normalized cross correlation between C1 and C2 when detuning C2 decoder.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

h co ( t ) = i = 1 N C i h ch ( t ( i 1 ) t ch ) exp [ j 2 ( i 1 ) l ch β ( λ ) ] ,
h co ( t ) = i = 1 N C i h ch ( t ( i 1 ) t ch ) exp [ j ( i 1 ) 2 π q ( 1 Δ λ λ B + Δ λ ) ] .
Δ ϕ = 2 π q ( Δ λ λ B + Δ λ ) 2 π q ( Δ λ λ B ) ,
h co ( t ) = i = 1 N C i h ch ( t ( i 1 ) t ch ) exp [ j ( i 1 ) ( 2 π q + Δ ϕ co ) ] ,
h deco ( t ) = k = 1 N C N k + 1 * h ch ( t ( k 1 ) t ch ) exp [ j ( k 1 ) ( 2 π q + Δ ϕ deco ) ] ,
( h co h deco ) t = ( N + 1 ) t ch = h ch ( 0 ) exp ( j N Δ ϕ deco ) i = 1 N ( C i C * N i + 1 ) exp { j ( i 1 ) ( Δ ϕ co Δ ϕ deco ) } .
η = i = 1 N exp { j ( i 1 ) ( Δ ϕ co Δ ϕ deco ) } N 2 = ( sin ( N Δ ϕ c o deco 2 ) ( N Δ ϕ c o deco 2 ) ) 2 ,
( Δ λ B λ ) 1.62 λ B 4 π n ¯ 1 N l ch .

Metrics