Abstract

We demonstrate a novel all-optical differentiator that carries out the first-order temporal derivation of optical intensity variation at high speed. It consists of a semiconductor optical amplifier (SOA) and an optical filter (OF) serving as an optical phase modulator and a frequency discriminator, respectively. A polarity-reversed derivative pair with a certain bias can be obtained by locating the probe wavelength at the positive or negative slope of the OF. Differentiations of super-Gaussian and Gaussian signals are obtained at various data rates. Defined as the mean absolute deviation of the measured result from the ideal result, total average errors of less than 0.12 are observed in all cases. Input power dynamics as well as control wavelength dependence are investigated and show that the cross-gain modulation in the SOA is detrimental to the differentiation performance.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Park, J. Azaña, and R. Slavík, Opt. Lett. 32, 710 (2007).
    [CrossRef] [PubMed]
  2. N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
    [CrossRef]
  3. R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, Opt. Express 14, 10699 (2006).
    [CrossRef] [PubMed]
  4. J. Dong, X. Zhang, J. Xu, P. Shum, and D. Huang, Opt. Lett. 32, 1223 (2007).
    [CrossRef] [PubMed]
  5. M. L. Nielsen, J. Mørk, R. Suzuki, J. Sakaguchi, and Y. Ueno, Opt. Express 14, 331 (2006).
    [CrossRef] [PubMed]
  6. Z. Fei and Y. Jianping, Proc. SPIE 5971, 597125 (2005).
    [CrossRef]
  7. J. Dong, S. Fu, X. Zhang, P. Shum, L. Zhang, J. Xu, and D. Huang, Opt. Commun. 270, 238 (2007).
    [CrossRef]

2007

2006

2005

Z. Fei and Y. Jianping, Proc. SPIE 5971, 597125 (2005).
[CrossRef]

2004

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Azaña, J.

Dong, J.

J. Dong, X. Zhang, J. Xu, P. Shum, and D. Huang, Opt. Lett. 32, 1223 (2007).
[CrossRef] [PubMed]

J. Dong, S. Fu, X. Zhang, P. Shum, L. Zhang, J. Xu, and D. Huang, Opt. Commun. 270, 238 (2007).
[CrossRef]

Fei, Z.

Z. Fei and Y. Jianping, Proc. SPIE 5971, 597125 (2005).
[CrossRef]

Fu, S.

J. Dong, S. Fu, X. Zhang, P. Shum, L. Zhang, J. Xu, and D. Huang, Opt. Commun. 270, 238 (2007).
[CrossRef]

Huang, D.

J. Dong, S. Fu, X. Zhang, P. Shum, L. Zhang, J. Xu, and D. Huang, Opt. Commun. 270, 238 (2007).
[CrossRef]

J. Dong, X. Zhang, J. Xu, P. Shum, and D. Huang, Opt. Lett. 32, 1223 (2007).
[CrossRef] [PubMed]

Jianping, Y.

Z. Fei and Y. Jianping, Proc. SPIE 5971, 597125 (2005).
[CrossRef]

Kam, C. H.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Kulishov, M.

Morandotti, R.

Mørk, J.

Ngo, N. Q.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Nielsen, M. L.

Park, Y.

Sakaguchi, J.

Shum, P.

J. Dong, X. Zhang, J. Xu, P. Shum, and D. Huang, Opt. Lett. 32, 1223 (2007).
[CrossRef] [PubMed]

J. Dong, S. Fu, X. Zhang, P. Shum, L. Zhang, J. Xu, and D. Huang, Opt. Commun. 270, 238 (2007).
[CrossRef]

Slavík, R.

Suzuki, R.

Tjin, S. C.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Ueno, Y.

Xu, J.

J. Dong, X. Zhang, J. Xu, P. Shum, and D. Huang, Opt. Lett. 32, 1223 (2007).
[CrossRef] [PubMed]

J. Dong, S. Fu, X. Zhang, P. Shum, L. Zhang, J. Xu, and D. Huang, Opt. Commun. 270, 238 (2007).
[CrossRef]

Yu, S. F.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Zhang, L.

J. Dong, S. Fu, X. Zhang, P. Shum, L. Zhang, J. Xu, and D. Huang, Opt. Commun. 270, 238 (2007).
[CrossRef]

Zhang, X.

J. Dong, S. Fu, X. Zhang, P. Shum, L. Zhang, J. Xu, and D. Huang, Opt. Commun. 270, 238 (2007).
[CrossRef]

J. Dong, X. Zhang, J. Xu, P. Shum, and D. Huang, Opt. Lett. 32, 1223 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Operation principle of the differentiator.

Fig. 2
Fig. 2

Experimental setup of the differentiator.

Fig. 3
Fig. 3

Polarity-reversed derivatives (R2 and R3) formed at a 40 Gbit s super-Gaussian input signal (R1). Two insets: transmission spectra of the BPF (S2 and S3) when R2 and R3 are formed. S1: optical spectrum of the probe light at the output of SOA.

Fig. 4
Fig. 4

Derivative results with 10, 20, and 40 Gbit s super-Gaussian (1–3) and 20 and 40 Gbit s Gaussian signals (4–5). A, B, and C represent the input data signal and the experimental and calculated differentiation, respectively.

Fig. 5
Fig. 5

Error versus control wavelength ( λ C ) . (a)–(c) output waveforms at different λ C . Inset: at various data rates when λ C is 1527 nm .

Fig. 6
Fig. 6

Error versus control optical power ( P C ) when P P is 0.3 mW (squares), 1 mW (triangles), and 3 mW (circles). Insets (d)–(g): output waveforms at different power combination of P C and P P .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Φ ( t ) = Φ N ( t ) + Φ C H ( t ) = 1 2 α N Γ g ¯ + 1 2 α C H ε C H Γ g ¯ ( I i n ( t ) + I P ) ,
δ ν ( t ) = 1 2 π d Φ ( t ) d t .
I o u t ( t ) = H ( v P + δ v ( t ) ) I S O A ( t ) ,
I o u t ( t ) = a α C H ε C H Γ g ¯ 4 π d I i n ( t ) d t + b b i a s ,
Error = 1 T T y c ( t ) y m ( t ) d t ,

Metrics