Abstract

A tiled-grating compressor, in which the spatial dispersion is not completely compensated, reduces the near-field-intensity modulation caused by tiling gaps and provides near-field spatial filtering of the input laser beam, thus reducing the laser damage to the final optics.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
    [CrossRef]
  2. L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
    [CrossRef]
  3. T. J. Kessler, J. Bunkenburg, H. Huang, A. Kozlov, and D. D. Meyerhofer, Opt. Lett. 29, 635 (2004).
    [CrossRef] [PubMed]
  4. J. Bunkenburg, T. J. Kessler, W. Skulski, and H. Huang, Opt. Lett. 31, 1561 (2006).
    [CrossRef] [PubMed]
  5. Ph. Donnat, C. Treimany, N. L'hullier, V. Rivoire, and O. Morice, Proc. SPIE 3047, 102 (1997).
  6. L. J. Waxer, Laboratory For Laser Energetics, University of Rochester (private communication, 2006).

2006 (2)

J. Bunkenburg, T. J. Kessler, W. Skulski, and H. Huang, Opt. Lett. 31, 1561 (2006).
[CrossRef] [PubMed]

L. J. Waxer, Laboratory For Laser Energetics, University of Rochester (private communication, 2006).

2005 (1)

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
[CrossRef]

2004 (1)

1997 (1)

Ph. Donnat, C. Treimany, N. L'hullier, V. Rivoire, and O. Morice, Proc. SPIE 3047, 102 (1997).

1988 (1)

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Bado, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Bunkenburg, J.

Donnat, Ph.

Ph. Donnat, C. Treimany, N. L'hullier, V. Rivoire, and O. Morice, Proc. SPIE 3047, 102 (1997).

Huang, H.

Kelly, J. H.

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
[CrossRef]

Kessler, T. J.

J. Bunkenburg, T. J. Kessler, W. Skulski, and H. Huang, Opt. Lett. 31, 1561 (2006).
[CrossRef] [PubMed]

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
[CrossRef]

T. J. Kessler, J. Bunkenburg, H. Huang, A. Kozlov, and D. D. Meyerhofer, Opt. Lett. 29, 635 (2004).
[CrossRef] [PubMed]

Kozlov, A.

Kruschwitz, B. E.

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
[CrossRef]

L'hullier, N.

Ph. Donnat, C. Treimany, N. L'hullier, V. Rivoire, and O. Morice, Proc. SPIE 3047, 102 (1997).

Loucks, S. J.

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
[CrossRef]

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Maywar, D. N.

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
[CrossRef]

McCrory, R. L.

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
[CrossRef]

Meyerhofer, D. D.

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
[CrossRef]

T. J. Kessler, J. Bunkenburg, H. Huang, A. Kozlov, and D. D. Meyerhofer, Opt. Lett. 29, 635 (2004).
[CrossRef] [PubMed]

Morice, O.

Ph. Donnat, C. Treimany, N. L'hullier, V. Rivoire, and O. Morice, Proc. SPIE 3047, 102 (1997).

Morse, S. F. B.

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
[CrossRef]

Mourou, G.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Pessot, M.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Rivoire, V.

Ph. Donnat, C. Treimany, N. L'hullier, V. Rivoire, and O. Morice, Proc. SPIE 3047, 102 (1997).

Skulski, W.

Stoeckl, C.

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
[CrossRef]

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Treimany, C.

Ph. Donnat, C. Treimany, N. L'hullier, V. Rivoire, and O. Morice, Proc. SPIE 3047, 102 (1997).

Waxer, L. J.

L. J. Waxer, Laboratory For Laser Energetics, University of Rochester (private communication, 2006).

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
[CrossRef]

Zuegel, J. D.

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Opt. Lett. (2)

Opt. Photon. News (1)

L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photon. News 16(7), 30 (2005).
[CrossRef]

Proc. SPIE (1)

Ph. Donnat, C. Treimany, N. L'hullier, V. Rivoire, and O. Morice, Proc. SPIE 3047, 102 (1997).

Other (1)

L. J. Waxer, Laboratory For Laser Energetics, University of Rochester (private communication, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Tiled four-grating compressor, each grating consisting of three tiles. Gratings G1 and G4 are translated to form an asymmetry causing a shift between spectral components.

Fig. 2
Fig. 2

(a) Diffraction pattern of a λ = 1.054 μ m wavefront with a 0.5 - mm -wide gap in the beam. The maximum propagation distance is 30 m , and the field width is 1.64 cm . (b) The maximum field intensity depends on the distance of propagation.

Fig. 3
Fig. 3

Intensity profiles at grating G4. (a) Intensity of the central frequency in a symmetric compressor. (b) Intensity of a blueshifted frequency in a symmetric compressor. (c) Blueshifted frequency in a nonsymmetric compressor, where the dip attributed to G1 moves with frequency.

Fig. 4
Fig. 4

Time-integrated intensity modulation at G4 versus the relative displacement of G1 and G4 in percentages for gap widths of 1.5, 1.0, and 0.5 mm (from top to bottom).

Fig. 5
Fig. 5

Modulation transfer function amplitude with various amounts of uncompensated dispersion. Top to bottom: dispersion between red and blue of 1, 2, 3, 4, and 5 mm .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ( x , z ) = 1 1 2 π a 2 a 2 k 0 k 0 d x d k × exp [ i k ( x x ) + i k 0 2 k 2 ] ,
I 4 ( x ) = d ω I ( ω , x ) ,
x = x + d θ d ω × ( L 12 L 34 ) × ( ω ω 0 ) .

Metrics