Abstract

We calculated the optical trapping forces on a microscopic particle in the ray optics regime for the case where a radially polarized laser beam is applied. A higher axial trapping efficiency than for a circularly polarized doughnut beam was predicted due to the large p polarization component. Three-dimensional optical trapping was expected for particles with a larger index of refraction and for objectives with a smaller numerical aperture.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
    [CrossRef]
  2. K. C. Neuman and S. Block, Rev. Sci. Instrum. 75, 2787 (2004).
    [CrossRef]
  3. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 29, 2234 (1990).
    [CrossRef] [PubMed]
  4. R. Oron, S. Blit, N. Davidson, and S. Friesem, Appl. Phys. Lett. 77, 3322 (2000).
    [CrossRef]
  5. I. Moshe, S. Jackel, and A. Meir, Opt. Lett. 28, 807 (2003).
    [CrossRef] [PubMed]
  6. T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, Appl. Phys. B 80, 707 (2005).
    [CrossRef]
  7. S. Quabis, R. Dorn, and G. Leuchs, Appl. Phys. B 81, 597 (2005).
    [CrossRef]
  8. K. Yonezawa, Y. Kozawa, and S. Sato, Opt. Lett. 31, 2151 (2006).
    [CrossRef] [PubMed]
  9. T. Hirayama, Y. Kozawa, T. Nakamura, and S. Sato, Opt. Express 14, 12839 (2006).
    [CrossRef] [PubMed]
  10. K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
    [CrossRef] [PubMed]
  11. Q. Zhan, Opt. Express 12, 3377 (2004).
    [CrossRef] [PubMed]
  12. Q. Zhan, J. Opt. A 5, 229 (2003).
    [CrossRef]
  13. D. Ganic, X. Gan, and M. Gu, Opt. Express 12, 2670 (2004).
    [CrossRef] [PubMed]
  14. D. Ganic, X. Gan, and M. Gu, Opt. Express 13, 1260 (2005).
    [CrossRef] [PubMed]
  15. A. Ashkin, Biophys. J. 61, 569 (1992).
    [CrossRef] [PubMed]

2006

2005

D. Ganic, X. Gan, and M. Gu, Opt. Express 13, 1260 (2005).
[CrossRef] [PubMed]

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, Appl. Phys. B 80, 707 (2005).
[CrossRef]

S. Quabis, R. Dorn, and G. Leuchs, Appl. Phys. B 81, 597 (2005).
[CrossRef]

2004

2003

2000

R. Oron, S. Blit, N. Davidson, and S. Friesem, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
[CrossRef] [PubMed]

1992

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

1990

Ahmed, M. A.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, Appl. Phys. B 80, 707 (2005).
[CrossRef]

Ashkin, A.

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

Blit, S.

R. Oron, S. Blit, N. Davidson, and S. Friesem, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Block, S.

K. C. Neuman and S. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Brown, T. G.

Davidson, N.

R. Oron, S. Blit, N. Davidson, and S. Friesem, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Dorn, R.

S. Quabis, R. Dorn, and G. Leuchs, Appl. Phys. B 81, 597 (2005).
[CrossRef]

Ford, D. H.

Friesem, S.

R. Oron, S. Blit, N. Davidson, and S. Friesem, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Gan, X.

Ganic, D.

Glur, H.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, Appl. Phys. B 80, 707 (2005).
[CrossRef]

Graf, T.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, Appl. Phys. B 80, 707 (2005).
[CrossRef]

Gu, M.

Hirayama, T.

Jackel, S.

Kimura, W. D.

Kozawa, Y.

Leuchs, G.

S. Quabis, R. Dorn, and G. Leuchs, Appl. Phys. B 81, 597 (2005).
[CrossRef]

Meir, A.

Moser, T.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, Appl. Phys. B 80, 707 (2005).
[CrossRef]

Moshe, I.

Nakamura, T.

Neuman, K. C.

K. C. Neuman and S. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Oron, R.

R. Oron, S. Blit, N. Davidson, and S. Friesem, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Parriaux, O.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, Appl. Phys. B 80, 707 (2005).
[CrossRef]

Pigeon, F.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, Appl. Phys. B 80, 707 (2005).
[CrossRef]

Quabis, S.

S. Quabis, R. Dorn, and G. Leuchs, Appl. Phys. B 81, 597 (2005).
[CrossRef]

Romano, V.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, Appl. Phys. B 80, 707 (2005).
[CrossRef]

Sato, S.

Tidwell, S. C.

Yonezawa, K.

Youngworth, K. S.

Zhan, Q.

Appl. Opt.

Appl. Phys. B

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, Appl. Phys. B 80, 707 (2005).
[CrossRef]

S. Quabis, R. Dorn, and G. Leuchs, Appl. Phys. B 81, 597 (2005).
[CrossRef]

Appl. Phys. Lett.

R. Oron, S. Blit, N. Davidson, and S. Friesem, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Biophys. J.

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

J. Opt. A

Q. Zhan, J. Opt. A 5, 229 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

K. C. Neuman and S. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Plot of trapping efficiency (a) in the Z direction and (b) in the Y direction for radially, circularly, and azimuthally polarized beams with uniform intensity distribution. A sphere with the index of refraction n 2 = 1.6 is supposed to be suspended in water.

Fig. 2
Fig. 2

Plot of the magnitude and direction of the trapping efficiency as a function of position of the focus of a radially polarized beam with doughnut-shaped intensity distribution ( R - TEM 01 * ) . The beam ratio a is 1.0. A sphere with the index of refraction n 2 = 1.6 is assumed to be suspended in water.

Fig. 3
Fig. 3

Plot of the magnitude of the maximum axial trapping efficiency as a function of (a) the beam ratio a and (b) the numerical aperture of an objective in water for radially ( R - TEM 01 * ) and circularly polarized ( C - TEM 01 * and C - TEM 00 ) beams. A sphere with the index of refraction n 2 = 1.6 is assumed to be suspended in water.

Fig. 4
Fig. 4

Plot of the magnitude of the maximum axial trapping efficiency as a function of the relative index of refraction for radially ( R - TEM 01 * ) , circularly ( C - TEM 01 * ) and azimuthally ( A - TEM 01 * ) polarized beams. The particle is assumed to be in water. The beam ratio a is 1.0.

Metrics