Abstract

What we believe to be a conceptually novel scheme for third-harmonic generation in engineered quasi-phase-matched χ(2) optical structures is proposed in which the fundamental-frequency field is directly converted into the third-harmonic field without the intermediate generation of the second-harmonic field. This counterintuitive scheme, which exploits the concept of adiabatic passage and the existence of a nonlinear dark state, bears a close connection to the “stimulated Raman adiabatic passage” technique of population transfer in atomic physics.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, in Progress in Optics, Vol. 47, E.Wolf, ed. (North-Holland, 2005), p. 1.
    [CrossRef]
  2. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2579 (2006).
    [CrossRef]
  3. J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, Opt. Lett. 31, 604 (2006).
    [CrossRef] [PubMed]
  4. J. R. Kurz, X. P. Xie, and M. M. Fejer, Opt. Lett. 27, 1445 (2002).
    [CrossRef]
  5. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
    [CrossRef]
  6. Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, Appl. Phys. Lett. 75, 448 (1999).
    [CrossRef]
  7. C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, Opt. Lett. 26, 899 (2001).
    [CrossRef]
  8. C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, Opt. Lett. 25, 436 (2000).
    [CrossRef]
  9. M. S. Kim and C. S. Yoon, Phys. Rev. A 65, 033831 (2002).
    [CrossRef]
  10. G. D. Xu, Y. H. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, J. Opt. Soc. Am. B 21, 568 (2004).
    [CrossRef]
  11. B. W. Shore, Contemp. Phys. 36, 15 (1995).
    [CrossRef]
  12. K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).
    [CrossRef]
  13. Apodization of the nonlinear interaction might be also achieved by varying the duty cycles Δ1 and Δ2 with a1=a2=0 [see T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, Opt. Lett. 32, 1129 (2007)].
    [CrossRef] [PubMed]
  14. H. Pu, P. Maenner, W. Zhang, and H. Y. Ling, Phys. Rev. Lett. 98, 050406 (2007).
    [CrossRef] [PubMed]

2007 (2)

2006 (2)

2005 (1)

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, in Progress in Optics, Vol. 47, E.Wolf, ed. (North-Holland, 2005), p. 1.
[CrossRef]

2004 (1)

2002 (2)

J. R. Kurz, X. P. Xie, and M. M. Fejer, Opt. Lett. 27, 1445 (2002).
[CrossRef]

M. S. Kim and C. S. Yoon, Phys. Rev. A 65, 033831 (2002).
[CrossRef]

2001 (1)

2000 (1)

1999 (1)

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, Appl. Phys. Lett. 75, 448 (1999).
[CrossRef]

1998 (1)

K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).
[CrossRef]

1997 (1)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
[CrossRef]

1995 (1)

B. W. Shore, Contemp. Phys. 36, 15 (1995).
[CrossRef]

Asobe, M.

Bergmann, K.

K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).
[CrossRef]

Chen, Y. B.

Fejer, M. M.

Huang, J.

Hum, D. S.

Kim, M. S.

M. S. Kim and C. S. Yoon, Phys. Rev. A 65, 033831 (2002).
[CrossRef]

Kivshar, Y. S.

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, in Progress in Optics, Vol. 47, E.Wolf, ed. (North-Holland, 2005), p. 1.
[CrossRef]

Kumar, S.

Kurz, J. R.

Langrock, C.

Ling, H. Y.

H. Pu, P. Maenner, W. Zhang, and H. Y. Ling, Phys. Rev. Lett. 98, 050406 (2007).
[CrossRef] [PubMed]

Liu, H.

Luo, G. P.

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, Appl. Phys. Lett. 75, 448 (1999).
[CrossRef]

Ma, J.

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, Appl. Phys. Lett. 75, 448 (1999).
[CrossRef]

Maenner, P.

H. Pu, P. Maenner, W. Zhang, and H. Y. Ling, Phys. Rev. Lett. 98, 050406 (2007).
[CrossRef] [PubMed]

Magari, K.

McGeehan, J. E.

Ming, N. B.

Nishida, Y.

Pu, H.

H. Pu, P. Maenner, W. Zhang, and H. Y. Ling, Phys. Rev. Lett. 98, 050406 (2007).
[CrossRef] [PubMed]

Qin, Y. Q.

C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, Opt. Lett. 25, 436 (2000).
[CrossRef]

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, Appl. Phys. Lett. 75, 448 (1999).
[CrossRef]

Roussev, R. V.

Saltiel, S. M.

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, in Progress in Optics, Vol. 47, E.Wolf, ed. (North-Holland, 2005), p. 1.
[CrossRef]

Shore, B. W.

K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).
[CrossRef]

B. W. Shore, Contemp. Phys. 36, 15 (1995).
[CrossRef]

Sukhorukov, A. A.

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, in Progress in Optics, Vol. 47, E.Wolf, ed. (North-Holland, 2005), p. 1.
[CrossRef]

Suzuki, H.

Tadanaga, O.

Theuer, H.

K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).
[CrossRef]

Umeki, T.

Wang, H. T.

Wang, Y. H.

Wei, H.

Willner, A. E.

Xie, X. P.

Xu, G. D.

Yanagawa, T.

Yang, S. X.

Yoon, C. S.

M. S. Kim and C. S. Yoon, Phys. Rev. A 65, 033831 (2002).
[CrossRef]

Zhang, C.

Zhang, W.

H. Pu, P. Maenner, W. Zhang, and H. Y. Ling, Phys. Rev. Lett. 98, 050406 (2007).
[CrossRef] [PubMed]

Zhu, S. N.

Zhu, Y. Y.

Appl. Phys. Lett. (1)

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, G. P. Luo, J. Ma, and N. B. Ming, Appl. Phys. Lett. 75, 448 (1999).
[CrossRef]

Contemp. Phys. (1)

B. W. Shore, Contemp. Phys. 36, 15 (1995).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Phys. Rev. A (1)

M. S. Kim and C. S. Yoon, Phys. Rev. A 65, 033831 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

H. Pu, P. Maenner, W. Zhang, and H. Y. Ling, Phys. Rev. Lett. 98, 050406 (2007).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).
[CrossRef]

Science (1)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
[CrossRef]

Other (1)

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, in Progress in Optics, Vol. 47, E.Wolf, ed. (North-Holland, 2005), p. 1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a nonlinear waveguide with a QPM grating design for adiabatic THG. The transverse patterning of the grating, with domain reversal at the shaded regions corresponding to d ( x , y , z ) = 1 , provides mode-overlap control and tailoring of the coupling terms σ 0 ( z ) (upper grating) and κ 0 ( z ) (lower grating). The dotted rectangular region corresponds to the channel waveguide.

Fig. 2
Fig. 2

(a) Normalized powers ψ l ( z ) 2 = P ω l P 0 ω versus propagation distance z for a spatial offset δ = 3 mm and input power P 0 ω = 10 W . The dashed curves, almost overlapped with the solid ones, are obtained from the reduced equations (4, 5, 6). (b) Behavior of nonlinear couplings κ 0 , σ 0 , and adiabatic parameter r versus z.

Fig. 3
Fig. 3

THG efficiency η 3 ω versus spatial offset δ (solid curve) for P 0 ω = 10 W . The dashed curves are the residual normalized output powers in the fundamental and second-harmonic fields. The two upper insets show the detailed dynamics for δ = 0 and δ = 3 mm .

Fig. 4
Fig. 4

THG conversion efficiency η 3 ω versus P 0 ω for (a) δ = 3 mm , and (b) δ = 3 mm .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

i d ψ 1 d z = κ ( z ) ψ 1 * ψ 2 + σ ( z ) ψ 2 * ψ 3 ,
i d ψ 2 d z = κ * ( z ) ψ 1 2 + 2 σ ( z ) ψ 1 * ψ 3 ,
i d ψ 3 d z = 3 σ * ( z ) ψ 1 ψ 2 ,
i d ψ 1 d z = κ 0 ( z ) ψ 1 * ψ 2 + σ 0 ( z ) ψ 2 * ψ 3 ,
i d ψ 2 d z = κ 0 * ( z ) ψ 1 2 + 2 σ 0 ( z ) ψ 1 * ψ 3 ,
i d ψ 3 d z = 3 σ 0 * ( z ) ψ 1 ψ 2 ,
ψ 1 0 = 2 σ 0 κ 0 2 + 4 σ 0 2 , ψ 2 0 = 0 , ψ 3 0 = κ 0 κ 0 2 + 4 σ 0 2 .
r 6 15 σ 0 ( d κ 0 d z ) κ 0 ( d σ 0 d z ) σ 0 ( κ 0 2 + 4 σ 0 2 ) 1 .

Metrics