Abstract

We propose a novel three-chip differential phase-shift keying (DPSK) maximum likelihood sequence estimation (MLSE) for chromatic-dispersion (CD) and first-order polarization-mode-dispersion (PMD) compensation to extend the transmission reach of the DPSK signal. Such a technique searches the most probable path through the trellis for DPSK data sequence estimation by exploiting the phase difference between not only the adjacent optical bits but also the bits that are one bit slot apart. The proposed scheme significantly outperforms conventional two-chip DPSK MLSE in CD and PMD compensation. We show that the proposed three-chip DPSK MLSE can enhance the CD tolerance of 10 Gbit/s DPSK signal to 2.5 times of that by using two-chip DPSK MLSE and can bound the penalty for 100 ps differential group delay by 1.4dB.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wang and J. M. Kahn, IEEE Photon. Technol. Lett. 16, 1397 (2004).
    [CrossRef]
  2. V. Curri, R. Gaudino, A. Napoli, and P. Poggiolini, IEEE Photon. Technol. Lett. 16, 2556 (2004).
    [CrossRef]
  3. C. Xia and W. Rosenkranz, in Optical Fiber Communication Conference (OFC) 2006 (Optical Society of America, 2006), paper OWR2.
  4. M. Nazarathy and E. Simony, IEEE Photon. Technol. Lett. 17, 1133 (2005).
    [CrossRef]
  5. Y. Yadin, A. Bilenca, and M. Nazarathy, IEEE Photon. Technol. Lett. 17, 2001 (2005).
    [CrossRef]
  6. X. Liu, in Optical Fiber Communication Conference (OFC) 2006 (Optical Society of America, 2006), paper OTuI2.
  7. J. Zhao, L.-K. Chen, and C.-K. Chan, IEEE Photon. Technol. Lett. 19, 73 (2007).
    [CrossRef]

2007 (1)

J. Zhao, L.-K. Chen, and C.-K. Chan, IEEE Photon. Technol. Lett. 19, 73 (2007).
[CrossRef]

2005 (2)

M. Nazarathy and E. Simony, IEEE Photon. Technol. Lett. 17, 1133 (2005).
[CrossRef]

Y. Yadin, A. Bilenca, and M. Nazarathy, IEEE Photon. Technol. Lett. 17, 2001 (2005).
[CrossRef]

2004 (2)

J. Wang and J. M. Kahn, IEEE Photon. Technol. Lett. 16, 1397 (2004).
[CrossRef]

V. Curri, R. Gaudino, A. Napoli, and P. Poggiolini, IEEE Photon. Technol. Lett. 16, 2556 (2004).
[CrossRef]

Bilenca, A.

Y. Yadin, A. Bilenca, and M. Nazarathy, IEEE Photon. Technol. Lett. 17, 2001 (2005).
[CrossRef]

Chan, C.-K.

J. Zhao, L.-K. Chen, and C.-K. Chan, IEEE Photon. Technol. Lett. 19, 73 (2007).
[CrossRef]

Chen, L.-K.

J. Zhao, L.-K. Chen, and C.-K. Chan, IEEE Photon. Technol. Lett. 19, 73 (2007).
[CrossRef]

Curri, V.

V. Curri, R. Gaudino, A. Napoli, and P. Poggiolini, IEEE Photon. Technol. Lett. 16, 2556 (2004).
[CrossRef]

Gaudino, R.

V. Curri, R. Gaudino, A. Napoli, and P. Poggiolini, IEEE Photon. Technol. Lett. 16, 2556 (2004).
[CrossRef]

Kahn, J. M.

J. Wang and J. M. Kahn, IEEE Photon. Technol. Lett. 16, 1397 (2004).
[CrossRef]

Liu, X.

X. Liu, in Optical Fiber Communication Conference (OFC) 2006 (Optical Society of America, 2006), paper OTuI2.

Napoli, A.

V. Curri, R. Gaudino, A. Napoli, and P. Poggiolini, IEEE Photon. Technol. Lett. 16, 2556 (2004).
[CrossRef]

Nazarathy, M.

M. Nazarathy and E. Simony, IEEE Photon. Technol. Lett. 17, 1133 (2005).
[CrossRef]

Y. Yadin, A. Bilenca, and M. Nazarathy, IEEE Photon. Technol. Lett. 17, 2001 (2005).
[CrossRef]

Poggiolini, P.

V. Curri, R. Gaudino, A. Napoli, and P. Poggiolini, IEEE Photon. Technol. Lett. 16, 2556 (2004).
[CrossRef]

Rosenkranz, W.

C. Xia and W. Rosenkranz, in Optical Fiber Communication Conference (OFC) 2006 (Optical Society of America, 2006), paper OWR2.

Simony, E.

M. Nazarathy and E. Simony, IEEE Photon. Technol. Lett. 17, 1133 (2005).
[CrossRef]

Wang, J.

J. Wang and J. M. Kahn, IEEE Photon. Technol. Lett. 16, 1397 (2004).
[CrossRef]

Xia, C.

C. Xia and W. Rosenkranz, in Optical Fiber Communication Conference (OFC) 2006 (Optical Society of America, 2006), paper OWR2.

Yadin, Y.

Y. Yadin, A. Bilenca, and M. Nazarathy, IEEE Photon. Technol. Lett. 17, 2001 (2005).
[CrossRef]

Zhao, J.

J. Zhao, L.-K. Chen, and C.-K. Chan, IEEE Photon. Technol. Lett. 19, 73 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

J. Wang and J. M. Kahn, IEEE Photon. Technol. Lett. 16, 1397 (2004).
[CrossRef]

V. Curri, R. Gaudino, A. Napoli, and P. Poggiolini, IEEE Photon. Technol. Lett. 16, 2556 (2004).
[CrossRef]

M. Nazarathy and E. Simony, IEEE Photon. Technol. Lett. 17, 1133 (2005).
[CrossRef]

Y. Yadin, A. Bilenca, and M. Nazarathy, IEEE Photon. Technol. Lett. 17, 2001 (2005).
[CrossRef]

J. Zhao, L.-K. Chen, and C.-K. Chan, IEEE Photon. Technol. Lett. 19, 73 (2007).
[CrossRef]

Other (2)

X. Liu, in Optical Fiber Communication Conference (OFC) 2006 (Optical Society of America, 2006), paper OTuI2.

C. Xia and W. Rosenkranz, in Optical Fiber Communication Conference (OFC) 2006 (Optical Society of America, 2006), paper OWR2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulation model and the structures of three-chip DPSK soft detection and the proposed three-chip DPSK MLSE.

Fig. 2
Fig. 2

Example of three-chip DPSK soft detection.

Fig. 3
Fig. 3

(a) Required E b N 0 (dB) versus CD obtained by using three-chip DPSK soft detection (circles) and three-chip DPSK MLSE with m = 4 (triangles) under a = 1 (solid curves) and optimal a value for each CD value (dashed curves). (b) Required E b N 0 (in dB) versus a obtained by using three-chip DPSK soft detection (circles) and three-chip DPSK MLSE with m = 4 (triangles) when the CD values are 1250 ps nm (solid curves) and 2500 ps nm (dashed curves).

Fig. 4
Fig. 4

(a) Required E b N 0 (in dB) versus DGD obtained by using three-chip DPSK soft detection (circles) and three-chip DPSK MLSE with m = 4 (triangles) under a = 1 (solid curves) and optimal a value for each DGD value (dashed curves) (b) Required E b N 0 (in dB) versus a obtained by using three-chip DPSK soft detection (circles) and three-chip DPSK MLSE with m = 4 (triangles) when the DGD values are 40 ps (solid curves) and 80 ps (dashed curves).

Fig. 5
Fig. 5

Required E b N 0 (in dB) versus (a) CD and (b) DGD for two-chip DPSK signal (solid curves) and three-chip DPSK signal under the weighting factor a = 1 (dashed curves). The circles, triangles, and squares represent the detection methods without MLSE (two-chip DPSK optimal threshold detection/three-chip DPSK soft detection), with MLSE under memory length m = 2 , and with MLSE under m = 4 , respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

q 00 = q T ( k T ) + q T ( ( k 1 ) T ) + a q 2 T ( k T ) ,
q 01 = q T ( k T ) + q T ( ( k 1 ) T ) a q 2 T ( k T ) ,
q 10 = q T ( k T ) q T ( ( k 1 ) T ) a q 2 T ( k T ) ,
q 11 = q T ( k T ) q T ( ( k 1 ) T ) + a q 2 T ( k T ) .
P M ( k ) = P M ( k 1 ) t j log ( p ( q T ( t j ) b k m , , b k ) ) a t j log ( p ( q 2 T ( t j ) b k m , , b k ) ) .

Metrics