Abstract

We experimentally demonstrate a novel scheme for a multiple-element photonic microwave true-time-delay device with high tunability based on a tunable chirped fiber Bragg grating without center wavelength shift. We achieve the different true time delay by controlling the grating period of a chirped fiber Bragg grating based on the symmetrical bending technique as a multiwavelength signal source is applied to carry microwave signals. The proposed method does not require the complex structure of systems, wavelength tuning, and synchronization of optical devices such as tunable bandpass filters and optical input signals. We achieve the tunabilty of the time delay for a microwave signal carried over an optical signal in a range from 1 to 230ps.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, X. Zheng, H. Zhang, Y. Guo, and B. Zhou, Opt. Lett. 31, 2789 (2006).
    [CrossRef] [PubMed]
  2. G. A. Ball, W. H. Glenn, and W. W. Morey, IEEE Photon. Technol. Lett. 6, 741 (1994).
    [CrossRef]
  3. Z. Fu, R. Li, and R. T. Chen, Opt. Lett. 23, 522 (1998).
    [CrossRef]
  4. B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, and D. Pastor, J. Lightwave Technol. 18, 430 (2000).
    [CrossRef]
  5. J. Yao, J. Yang, and Y. Liu, IEEE Photon. Technol. Lett. 14, 687 (2002).
    [CrossRef]
  6. S. S. Lee, Y. H. Oh, and S. Y. Shin, IEEE Photon. Technol. Lett. 16, 2335 (2004).
    [CrossRef]
  7. S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, IEEE Photon. Technol. Lett. 16, 1095 (2005).
    [CrossRef]
  8. T. Imai, T. Komukai, and M. Nakazawa, IEEE Photon. Technol. Lett. 10, 845 (1998).
    [CrossRef]
  9. X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C. Zhao, IEEE Photon. Technol. Lett. 11, 2970 (2003).
  10. Y. G. Han and S. B. Lee, Opt. Express 13, 9224 (2005).
    [CrossRef] [PubMed]

2006

2005

Y. G. Han and S. B. Lee, Opt. Express 13, 9224 (2005).
[CrossRef] [PubMed]

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, IEEE Photon. Technol. Lett. 16, 1095 (2005).
[CrossRef]

2004

S. S. Lee, Y. H. Oh, and S. Y. Shin, IEEE Photon. Technol. Lett. 16, 2335 (2004).
[CrossRef]

2003

X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C. Zhao, IEEE Photon. Technol. Lett. 11, 2970 (2003).

2002

J. Yao, J. Yang, and Y. Liu, IEEE Photon. Technol. Lett. 14, 687 (2002).
[CrossRef]

2000

1998

Z. Fu, R. Li, and R. T. Chen, Opt. Lett. 23, 522 (1998).
[CrossRef]

T. Imai, T. Komukai, and M. Nakazawa, IEEE Photon. Technol. Lett. 10, 845 (1998).
[CrossRef]

1994

G. A. Ball, W. H. Glenn, and W. W. Morey, IEEE Photon. Technol. Lett. 6, 741 (1994).
[CrossRef]

Andres, M. V.

Ball, G. A.

G. A. Ball, W. H. Glenn, and W. W. Morey, IEEE Photon. Technol. Lett. 6, 741 (1994).
[CrossRef]

Capmany, J.

Chan, C. C.

X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C. Zhao, IEEE Photon. Technol. Lett. 11, 2970 (2003).

Chen, R. T.

Cruz, J. L.

Dong, X.

X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C. Zhao, IEEE Photon. Technol. Lett. 11, 2970 (2003).

Fu, Z.

Glenn, W. H.

G. A. Ball, W. H. Glenn, and W. W. Morey, IEEE Photon. Technol. Lett. 6, 741 (1994).
[CrossRef]

Guo, Y.

Han, Y. G.

Imai, T.

T. Imai, T. Komukai, and M. Nakazawa, IEEE Photon. Technol. Lett. 10, 845 (1998).
[CrossRef]

Komukai, T.

T. Imai, T. Komukai, and M. Nakazawa, IEEE Photon. Technol. Lett. 10, 845 (1998).
[CrossRef]

Kubota, F.

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, IEEE Photon. Technol. Lett. 16, 1095 (2005).
[CrossRef]

Lee, S. B.

Lee, S. S.

S. S. Lee, Y. H. Oh, and S. Y. Shin, IEEE Photon. Technol. Lett. 16, 2335 (2004).
[CrossRef]

Li, R.

Liu, Y.

J. Yao, J. Yang, and Y. Liu, IEEE Photon. Technol. Lett. 14, 687 (2002).
[CrossRef]

Liu, Z.

Matsumoto, S.

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, IEEE Photon. Technol. Lett. 16, 1095 (2005).
[CrossRef]

Miyazaki, T.

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, IEEE Photon. Technol. Lett. 16, 1095 (2005).
[CrossRef]

Morey, W. W.

G. A. Ball, W. H. Glenn, and W. W. Morey, IEEE Photon. Technol. Lett. 6, 741 (1994).
[CrossRef]

Nakazawa, M.

T. Imai, T. Komukai, and M. Nakazawa, IEEE Photon. Technol. Lett. 10, 845 (1998).
[CrossRef]

Ng, J. H.

X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C. Zhao, IEEE Photon. Technol. Lett. 11, 2970 (2003).

Ngo, N. Q.

X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C. Zhao, IEEE Photon. Technol. Lett. 11, 2970 (2003).

Oh, Y. H.

S. S. Lee, Y. H. Oh, and S. Y. Shin, IEEE Photon. Technol. Lett. 16, 2335 (2004).
[CrossRef]

Ortega, B.

Pastor, D.

Shin, S. Y.

S. S. Lee, Y. H. Oh, and S. Y. Shin, IEEE Photon. Technol. Lett. 16, 2335 (2004).
[CrossRef]

Shum, P.

X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C. Zhao, IEEE Photon. Technol. Lett. 11, 2970 (2003).

Sugihara, T.

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, IEEE Photon. Technol. Lett. 16, 1095 (2005).
[CrossRef]

Takabayashi, M.

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, IEEE Photon. Technol. Lett. 16, 1095 (2005).
[CrossRef]

Yang, J.

J. Yao, J. Yang, and Y. Liu, IEEE Photon. Technol. Lett. 14, 687 (2002).
[CrossRef]

Yao, J.

J. Yao, J. Yang, and Y. Liu, IEEE Photon. Technol. Lett. 14, 687 (2002).
[CrossRef]

Yoshiara, K.

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, IEEE Photon. Technol. Lett. 16, 1095 (2005).
[CrossRef]

Zhang, H.

Zhao, C.

X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C. Zhao, IEEE Photon. Technol. Lett. 11, 2970 (2003).

Zheng, X.

Zhou, B.

IEEE Photon. Technol. Lett.

J. Yao, J. Yang, and Y. Liu, IEEE Photon. Technol. Lett. 14, 687 (2002).
[CrossRef]

S. S. Lee, Y. H. Oh, and S. Y. Shin, IEEE Photon. Technol. Lett. 16, 2335 (2004).
[CrossRef]

S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, IEEE Photon. Technol. Lett. 16, 1095 (2005).
[CrossRef]

T. Imai, T. Komukai, and M. Nakazawa, IEEE Photon. Technol. Lett. 10, 845 (1998).
[CrossRef]

X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C. Zhao, IEEE Photon. Technol. Lett. 11, 2970 (2003).

G. A. Ball, W. H. Glenn, and W. W. Morey, IEEE Photon. Technol. Lett. 6, 741 (1994).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scheme of a (a) multiple-element TTD configuration based on the tunable CFBG-based photonic microwave TTD line and (b) the proposed tunable CFBG based on the symmetrical bending technique. (c) Photograph of the proposed scheme.

Fig. 2
Fig. 2

(a) Optical reflection spectra of the tunable CFBG for the variation of a moving stage, (b) the spectral bandwidth change as a function of the moving distance of a translation stage, (c) the time-delay spectral response of the fiber grating as a function of a moving distance, and (d) the measured group-delay ripple of the fiber grating at the moving distance of 6 mm .

Fig. 3
Fig. 3

Measured time delay with the variation of a moving stage for the different microwave frequencies at the different optical input wavelengths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϵ = 6 d L 3 y ( L 2 x ) ,
Δ λ = λ max λ min = λ p ( 1 ρ ) 6 d L sin θ ,
Δ Λ = Δ λ 2 n eff L ,

Metrics