Abstract

We propose a beam splitter for cold polar molecules in weak-field-seeking states that uses a Y-shaped charged wire half embedded in a substrate and sandwiched by a charged metallic parallel-plate capacitor. We demonstrate our molecular-beam splitter and study its dynamic beam-splitting process for the guided cold molecules by using Monte Carlo simulation. Our study shows that cold polar molecules from a supersonic beam source with a mean velocity of a few hundred meters per second can be split with a fixed 0.50.5 splitting ratio, and an adjustable splitting ratio of about 0.030.97 can be realized by introducing a small alteration to the scheme.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. L. Bethlem, G. Berden, and G. Meijer, Phys. Rev. Lett. 83, 1558 (1999).
    [CrossRef]
  2. J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, Phys. Rev. Lett. 91, 243001 (2003).
    [CrossRef] [PubMed]
  3. S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, Phys. Rev. A 67, 043406 (2003).
    [CrossRef]
  4. H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, Phys. Rev. Lett. 79, 2787 (1997).
    [CrossRef]
  5. H. J. Loesch and B. Scheel, Phys. Rev. Lett. 85, 2709 (2000).
    [CrossRef] [PubMed]
  6. J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, Phys. Rev. 73, 063408 (2006).
    [CrossRef]
  7. L. Z. Deng, Y. Xia, and J. P. Yin, Chin. Phys. Lett. 22, 1887 (2005).
    [CrossRef]

2006 (1)

J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, Phys. Rev. 73, 063408 (2006).
[CrossRef]

2005 (1)

L. Z. Deng, Y. Xia, and J. P. Yin, Chin. Phys. Lett. 22, 1887 (2005).
[CrossRef]

2003 (2)

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef] [PubMed]

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, Phys. Rev. A 67, 043406 (2003).
[CrossRef]

2000 (1)

H. J. Loesch and B. Scheel, Phys. Rev. Lett. 85, 2709 (2000).
[CrossRef] [PubMed]

1999 (1)

H. L. Bethlem, G. Berden, and G. Meijer, Phys. Rev. Lett. 83, 1558 (1999).
[CrossRef]

1997 (1)

H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, Phys. Rev. Lett. 79, 2787 (1997).
[CrossRef]

Berden, G.

H. L. Bethlem, G. Berden, and G. Meijer, Phys. Rev. Lett. 83, 1558 (1999).
[CrossRef]

Bethlem, H. L.

J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, Phys. Rev. 73, 063408 (2006).
[CrossRef]

H. L. Bethlem, G. Berden, and G. Meijer, Phys. Rev. Lett. 83, 1558 (1999).
[CrossRef]

Bochinski, J. R.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef] [PubMed]

Constant, E.

H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, Phys. Rev. Lett. 79, 2787 (1997).
[CrossRef]

Corkum, P. B.

H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, Phys. Rev. Lett. 79, 2787 (1997).
[CrossRef]

Deng, L. Z.

L. Z. Deng, Y. Xia, and J. P. Yin, Chin. Phys. Lett. 22, 1887 (2005).
[CrossRef]

Hudson, E. R.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef] [PubMed]

Junglen, T.

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Lewandowski, H. J.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef] [PubMed]

Loesch, H. J.

H. J. Loesch and B. Scheel, Phys. Rev. Lett. 85, 2709 (2000).
[CrossRef] [PubMed]

Meijer, G.

J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, Phys. Rev. 73, 063408 (2006).
[CrossRef]

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef] [PubMed]

H. L. Bethlem, G. Berden, and G. Meijer, Phys. Rev. Lett. 83, 1558 (1999).
[CrossRef]

Pinkse, P. W. H.

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Rangwala, S. A.

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Rempe, G.

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Rieger, T.

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Sakai, H.

H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, Phys. Rev. Lett. 79, 2787 (1997).
[CrossRef]

Scheel, B.

H. J. Loesch and B. Scheel, Phys. Rev. Lett. 85, 2709 (2000).
[CrossRef] [PubMed]

Schnell, M.

J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, Phys. Rev. 73, 063408 (2006).
[CrossRef]

Stapelfeldt, H.

H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, Phys. Rev. Lett. 79, 2787 (1997).
[CrossRef]

van Veldhoven, J.

J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, Phys. Rev. 73, 063408 (2006).
[CrossRef]

Xia, Y.

L. Z. Deng, Y. Xia, and J. P. Yin, Chin. Phys. Lett. 22, 1887 (2005).
[CrossRef]

Ye, J.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef] [PubMed]

Yin, J. P.

L. Z. Deng, Y. Xia, and J. P. Yin, Chin. Phys. Lett. 22, 1887 (2005).
[CrossRef]

Chin. Phys. Lett. (1)

L. Z. Deng, Y. Xia, and J. P. Yin, Chin. Phys. Lett. 22, 1887 (2005).
[CrossRef]

Phys. Rev. (1)

J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, Phys. Rev. 73, 063408 (2006).
[CrossRef]

Phys. Rev. A (1)

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Phys. Rev. Lett. (4)

H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, Phys. Rev. Lett. 79, 2787 (1997).
[CrossRef]

H. J. Loesch and B. Scheel, Phys. Rev. Lett. 85, 2709 (2000).
[CrossRef] [PubMed]

H. L. Bethlem, G. Berden, and G. Meijer, Phys. Rev. Lett. 83, 1558 (1999).
[CrossRef]

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, Phys. Rev. Lett. 91, 243001 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of our proposed molecular-beam splitter (MBS) with (a) a fixed splitting ratio and (b) a controllable splitting ratio.

Fig. 2
Fig. 2

Electrostatic field distribution of the MBS from position z = 0 to z = 160 mm .

Fig. 3
Fig. 3

Dependence of both the transverse position (open symbols) of the electric field minimum and the mean transverse position (solid symbols) of the guided molecular ensemble on the propagation position z.

Fig. 4
Fig. 4

Relationships between the splitting ratio R of the MBS and the voltage difference Δ u = u 4 u 3 with L = 48 mm , 58 mm , and 68 mm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W E ( r ) = [ ( W inv 2 ) 2 + ( μ e E ( r ) 2 ) 2 ] 1 2 W inv 2 ,
F ( r ) = W E ( r ) = 1 2 μ e E ( r ) .

Metrics