Abstract

This work is concerned with the experimental demonstration of a dual-band negative index metamaterial. The sample is double negative (showing both a negative effective permeability and a negative effective permittivity) for linearly polarized light with a wavelength between 799 and 818nm, and the real part of its refractive index is approximately 1.0 at 813nm. The ratio of Re(n)Im(n) is close to 1.3 at 813nm. For an orthogonal polarization, the same sample also exhibits a negative refractive index in the visible (at 772nm). The spectroscopic measurements of the material are in good agreement with the results obtained from a finite-element electromagnetic solver for the actual geometry of the fabricated sample at both polarizations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
    [CrossRef] [PubMed]
  2. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, J. Nonlinear Opt. Phys. Mater. 11, 65 (2002).
    [CrossRef]
  3. N. C. Panoiu and R. M. Osgood, Phys. Rev. E 68, 016611 (2003).
    [CrossRef]
  4. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Opt. Lett. 30, 3356 (2005).
    [CrossRef]
  5. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef] [PubMed]
  6. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006).
    [CrossRef] [PubMed]
  7. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, J. Opt. Soc. Am. B 23, 434 (2006).
    [CrossRef]
  8. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 32, 53 (2007).
    [CrossRef]
  9. A. V. Kildishev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, J. Opt. Soc. Am. B 23, 423 (2006).
    [CrossRef]
  10. J. B. Pendry, A. J. Holder, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
    [CrossRef] [PubMed]
  11. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, Opt. Express 14, 7872 (2006).
    [CrossRef] [PubMed]
  12. H.-K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, Opt. Express 15, 1076 (2007).
    [CrossRef] [PubMed]
  13. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  14. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  15. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
    [CrossRef]

2007 (2)

2006 (4)

2005 (2)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Opt. Lett. 30, 3356 (2005).
[CrossRef]

2003 (2)

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
[CrossRef]

N. C. Panoiu and R. M. Osgood, Phys. Rev. E 68, 016611 (2003).
[CrossRef]

2002 (2)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, J. Nonlinear Opt. Phys. Mater. 11, 65 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

1996 (1)

J. B. Pendry, A. J. Holder, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Boltasseva, A.

Brueck, S. R. J.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, J. Opt. Soc. Am. B 23, 434 (2006).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Cai, W.

Chettiar, U. K.

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Dolling, G.

Drachev, V. P.

Enkrich, C.

Fan, W.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, J. Opt. Soc. Am. B 23, 434 (2006).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Holder, A. J.

J. B. Pendry, A. J. Holder, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kildishev, A. V.

Klar, T. A.

Koschny, T.

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
[CrossRef]

Linden, S.

Malloy, K. J.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, J. Opt. Soc. Am. B 23, 434 (2006).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Markos, P.

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Osgood, R. M.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, J. Opt. Soc. Am. B 23, 434 (2006).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

N. C. Panoiu and R. M. Osgood, Phys. Rev. E 68, 016611 (2003).
[CrossRef]

Panoiu, N. C.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, J. Opt. Soc. Am. B 23, 434 (2006).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

N. C. Panoiu and R. M. Osgood, Phys. Rev. E 68, 016611 (2003).
[CrossRef]

Pendry, J. B.

J. B. Pendry, A. J. Holder, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Podolskiy, V. A.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, J. Nonlinear Opt. Phys. Mater. 11, 65 (2002).
[CrossRef]

Sarychev, A. K.

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Smith, D. R.

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Soukoulis, C. M.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 32, 53 (2007).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006).
[CrossRef] [PubMed]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holder, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Wegener, M.

Youngs, I.

J. B. Pendry, A. J. Holder, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Yuan, H.-K.

Zhang, S.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, J. Opt. Soc. Am. B 23, 434 (2006).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

J. Nonlinear Opt. Phys. Mater. (1)

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, J. Nonlinear Opt. Phys. Mater. 11, 65 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Phys. Rev. E (2)

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003).
[CrossRef]

N. C. Panoiu and R. M. Osgood, Phys. Rev. E 68, 016611 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holder, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Background shows the FESEM image of the NIM sample; the inset in Fig. 1a depicts the unit cell of the simulated structure. (b) Comparison of the experimental transmission ( T e ) , reflection ( R e ) , and absorption ( A e ) spectra of the sample with simulated results ( T s , R s , and A s ) at the primary linear polarization as shown in Fig. 1a.

Fig. 2
Fig. 2

(a) Light polarization in the SNNIM regime; (b) experimental transmission ( T e ) , reflection ( R e ) , and absorption ( A e ) versus the results ( T s , R s , and A s ) obtained from numerical simulations with the polarization shown in Fig. 2a.

Fig. 3
Fig. 3

Sample in the DNNIM regime; the primary polarization of light is used in modeling as shown in the inset. (a) Real part of the effective refractive index and FOM; the FOM is set to zero if n > 0 . (b) Real part of the effective permeability ( μ ) and permittivity ( ε ) are both negative from 799 to 818 nm .

Fig. 4
Fig. 4

Sample in the SNNIM regime; secondary polarization of light is used in modeling as shown in the inset. (a) Real part of the effective refractive index and FOM; (b) the effective permeability ( μ ) is positive everywhere, and only the permittivity ( ε ) is negative.

Metrics