Abstract

We demonstrate tunable spectral enhancement of the supercontinuum generated in a microstructured fiber with a fiber long-period grating. The long-period grating leads to phase distortion and loss that, with subsequent high-intensity propagation in uniform fiber, evolves into an enhancement around the grating’s resonant wavelengths. Wavelength tunability is achieved by varying the temperature or the ambient refractive index, and the spectral peak can be extinguished by immersing the grating in index-matching oil.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  2. J. C. Knight, Nature 424, 827 (2003).
    [CrossRef]
  3. A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  4. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
    [CrossRef] [PubMed]
  6. T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
    [CrossRef] [PubMed]
  7. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, Opt. Lett. 26, 608 (2001).
    [CrossRef]
  8. T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki and M. Saruwatari, Electron. Lett. 31, 1064 (1995).
    [CrossRef]
  9. P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
    [CrossRef]
  10. Y. Li, F. C. Salisbury, Z. Zhu, T. G. Brown, P. S. Westbrook, K. S. Feder, and R. S. Windeler, Opt. Express 13, 998 (2006).
    [CrossRef]
  11. P. S. Westbrook and J. W. Nicholson, Opt. Express 14, 7610 (2006).
    [CrossRef] [PubMed]
  12. D. R. Austin, J. A. Bolger, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, Opt. Express 14, 13142 (2006).
    [CrossRef] [PubMed]
  13. K. Kim, S. A. Diddams, P. S. Westbrook, J. W. Nicholson, and K. S. Feder, Opt. Lett. 31, 277 (2006).
    [CrossRef] [PubMed]
  14. A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, Appl. Phys. Lett. 87, 121113 (2005).
    [CrossRef]
  15. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  16. B. H. Lee, Y. Liu, S. B. Lee, S. S. Choi, and J. N. Jang, Opt. Lett. 22, 1769 (1997).
    [CrossRef]
  17. P. St. J. Russell, J. Mod. Opt. 38, 1599 (1991).
    [CrossRef]

2006 (5)

2005 (1)

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, Appl. Phys. Lett. 87, 121113 (2005).
[CrossRef]

2004 (1)

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

2003 (1)

J. C. Knight, Nature 424, 827 (2003).
[CrossRef]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

2001 (2)

2000 (2)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

1997 (1)

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

1995 (1)

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki and M. Saruwatari, Electron. Lett. 31, 1064 (1995).
[CrossRef]

1991 (1)

P. St. J. Russell, J. Mod. Opt. 38, 1599 (1991).
[CrossRef]

Assion, A.

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, Appl. Phys. Lett. 87, 121113 (2005).
[CrossRef]

Austin, D. R.

Baumert, T.

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, Appl. Phys. Lett. 87, 121113 (2005).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Bolger, J. A.

Brown, T.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Brown, T. G.

Choi, S. S.

Chudoba, C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

de Sterke, C. M.

Diddams, S. A.

K. Kim, S. A. Diddams, P. S. Westbrook, J. W. Nicholson, and K. S. Feder, Opt. Lett. 31, 277 (2006).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Eggleton, B. J.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Feder, K. S.

Fujimoto, J. G.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Ghanta, R. K.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Hartl, I.

Herrmann, J.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Husakou, A. V.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Jang, J. N.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Kawanishi, S.

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki and M. Saruwatari, Electron. Lett. 31, 1064 (1995).
[CrossRef]

Kim, K.

Knight, J. C.

J. C. Knight, Nature 424, 827 (2003).
[CrossRef]

Ko, T. H.

Lee, B. H.

Lee, S. B.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Li, X. D.

Li, Y.

Y. Li, F. C. Salisbury, Z. Zhu, T. G. Brown, P. S. Westbrook, K. S. Feder, and R. S. Windeler, Opt. Express 13, 998 (2006).
[CrossRef]

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Liu, Y.

Morioka, T.

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki and M. Saruwatari, Electron. Lett. 31, 1064 (1995).
[CrossRef]

Nicholson, J. W.

Präkelt, A.

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, Appl. Phys. Lett. 87, 121113 (2005).
[CrossRef]

Ranka, J. K.

Russell, P. St. J.

P. St. J. Russell, J. Mod. Opt. 38, 1599 (1991).
[CrossRef]

Salisbury, F. C.

Sarpe-Tudoran, C.

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, Appl. Phys. Lett. 87, 121113 (2005).
[CrossRef]

Saruwatari, M.

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki and M. Saruwatari, Electron. Lett. 31, 1064 (1995).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Stentz, A. J.

Suzuki, S.

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki and M. Saruwatari, Electron. Lett. 31, 1064 (1995).
[CrossRef]

Uchiyama, K.

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki and M. Saruwatari, Electron. Lett. 31, 1064 (1995).
[CrossRef]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Westbrook, P. S.

Windeler, R. S.

Wollenhaupt, M.

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, Appl. Phys. Lett. 87, 121113 (2005).
[CrossRef]

Zhu, Z.

Appl. Phys. Lett. (2)

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumert, Appl. Phys. Lett. 87, 121113 (2005).
[CrossRef]

Electron. Lett. (1)

T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki and M. Saruwatari, Electron. Lett. 31, 1064 (1995).
[CrossRef]

J. Lightwave Technol. (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

J. Mod. Opt. (1)

P. St. J. Russell, J. Mod. Opt. 38, 1599 (1991).
[CrossRef]

Nature (2)

J. C. Knight, Nature 424, 827 (2003).
[CrossRef]

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the device, as described in the text. Sketches above each section show the spectral profile of the laser pulse at the end of each section. The inset shows the typical amplitude loss and phase feature of an LPG near resonance.

Fig. 2
Fig. 2

Left: Modeling results showing propagation through the device at a peak power P o of 0.8 kW (gray curves) and 3.5 kW (black curves). The diagrams on the right show expanded views of the spectrum near the LPG resonance at the (top) high power and (bottom) lower power. Dashed curves are the corresponding spectra in the absence of the grating.

Fig. 3
Fig. 3

Measured output spectra at peak power levels of 0.8 kW (gray curves) and 3.5 kW (black curves) showing two LPG resonances. The two dashed curves show corresponding spectra when the LPG is removed by immersing the grating in index-matching oil. Inset shows the entire supercontinuum spectrum at both power levels.

Fig. 4
Fig. 4

Tunability with increasing temperature of the enhancement at the two resonances. Inset shows examples of spectra measured at several temperatures.

Metrics