Abstract

The Fourier components of interference signals generated by scanning a high-numerical-aperture objective orthogonal to an object surface correspond to different angles of incidence on the surface. The phase and amplitude of these Fourier components relate to the structure of the object, including in particular the 3D topography and thickness profiles of thin-film layers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pluta, Advanced Light Microscopy, Vol. 3 (Elsevier, 1993), pp. 265-271.
  2. S. V. Shatalin, R. Juskaitis, J. B. Tan, and T. Wilson, J. Microsc. 179, 241 (1995).
    [CrossRef]
  3. A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, Appl. Phys. Lett. 60, 1301 (1992).
    [CrossRef]
  4. G. D. Feke, D. P. Snow, R. D. Grober, P. J. de Groot, and L. Deck, Appl. Opt. 37, 1796 (1998).
    [CrossRef]
  5. S.-W. Kim and G.-H. Kim, Appl. Opt. 38, 5968 (1999).
    [CrossRef]
  6. P. de Groot, 'Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures,' U.S. patent 7,139,081 (November 21, 2006).
  7. P. de Groot and X. Colonna de Lega, Appl. Opt. 43, 4821 (2004).
    [CrossRef] [PubMed]
  8. C. J. R. Sheppard and K. G. Larkin, Appl. Opt. 34, 4731 (1995).
    [CrossRef] [PubMed]
  9. I. Abdulhalim, Meas. Sci. Technol. 12, 1996 (2001).
    [CrossRef]

2004

2001

I. Abdulhalim, Meas. Sci. Technol. 12, 1996 (2001).
[CrossRef]

1999

1998

1995

S. V. Shatalin, R. Juskaitis, J. B. Tan, and T. Wilson, J. Microsc. 179, 241 (1995).
[CrossRef]

C. J. R. Sheppard and K. G. Larkin, Appl. Opt. 34, 4731 (1995).
[CrossRef] [PubMed]

1992

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, Appl. Phys. Lett. 60, 1301 (1992).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, Meas. Sci. Technol. 12, 1996 (2001).
[CrossRef]

Colonna de Lega, X.

de Groot, P.

P. de Groot and X. Colonna de Lega, Appl. Opt. 43, 4821 (2004).
[CrossRef] [PubMed]

P. de Groot, 'Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures,' U.S. patent 7,139,081 (November 21, 2006).

de Groot, P. J.

Deck, L.

Fanton, J. T.

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, Appl. Phys. Lett. 60, 1301 (1992).
[CrossRef]

Feke, G. D.

Grober, R. D.

Juskaitis, R.

S. V. Shatalin, R. Juskaitis, J. B. Tan, and T. Wilson, J. Microsc. 179, 241 (1995).
[CrossRef]

Kelso, S. M.

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, Appl. Phys. Lett. 60, 1301 (1992).
[CrossRef]

Kim, G.-H.

Kim, S.-W.

Larkin, K. G.

Opsal, J.

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, Appl. Phys. Lett. 60, 1301 (1992).
[CrossRef]

Pluta, M.

M. Pluta, Advanced Light Microscopy, Vol. 3 (Elsevier, 1993), pp. 265-271.

Rosencwaig, A.

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, Appl. Phys. Lett. 60, 1301 (1992).
[CrossRef]

Shatalin, S. V.

S. V. Shatalin, R. Juskaitis, J. B. Tan, and T. Wilson, J. Microsc. 179, 241 (1995).
[CrossRef]

Sheppard, C. J. R.

Snow, D. P.

Tan, J. B.

S. V. Shatalin, R. Juskaitis, J. B. Tan, and T. Wilson, J. Microsc. 179, 241 (1995).
[CrossRef]

Willenborg, D. L.

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, Appl. Phys. Lett. 60, 1301 (1992).
[CrossRef]

Wilson, T.

S. V. Shatalin, R. Juskaitis, J. B. Tan, and T. Wilson, J. Microsc. 179, 241 (1995).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Rosencwaig, J. Opsal, D. L. Willenborg, S. M. Kelso, and J. T. Fanton, Appl. Phys. Lett. 60, 1301 (1992).
[CrossRef]

J. Microsc.

S. V. Shatalin, R. Juskaitis, J. B. Tan, and T. Wilson, J. Microsc. 179, 241 (1995).
[CrossRef]

Meas. Sci. Technol.

I. Abdulhalim, Meas. Sci. Technol. 12, 1996 (2001).
[CrossRef]

Other

M. Pluta, Advanced Light Microscopy, Vol. 3 (Elsevier, 1993), pp. 265-271.

P. de Groot, 'Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures,' U.S. patent 7,139,081 (November 21, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

High-NA, narrow-bandwidth coherence scanning microscope for angle-resolved surface structure analysis. The figure highlights the path of one ray bundle at an incident angle Ψ.

Fig. 2
Fig. 2

Simulated interference signal for a 2 μ m film of Si O 2 on Si.

Fig. 3
Fig. 3

Fourier transform magnitude of the signal in Fig. 2, showing how the fringe frequencies correspond to the cosines of the incident angles in the high-NA objective. The dashed line is the expected linear spectrum when there is no film on the surface.

Fig. 4
Fig. 4

Experimental cross-sectional profile through a 3D image of the edge of an Si O 2 -coated Si wafer. The data show both the Si substrate and top surface of the Si O 2 measured simultaneously over multiple image points.

Tables (1)

Tables Icon

Table 1 Measurement Results for Si O 2 on Si Film Thickness Standards

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

g x , y ( K ) = r ( K ) + t ( K ) m x , y ( K ) exp [ i K ( ζ h x , y ) ] 2 ,
K = 4 π β λ .
I x , y ( ζ ) = q x , y ( K ) exp ( i K ζ ) d K ,
q x , y ( K ) = ρ ( K ) exp ( i K h x , y ) ,
ρ x , y ( K > 0 ) = [ K U ( K ) r ( K ) t * ( K ) Υ ] m x , y * ( K ) ,
Υ = U ( K ) K d K .
m ̂ ( L , K ) = ϑ 1 + ϑ 2 exp ( i K ¯ L ) 1 + ϑ 1 ϑ 2 exp ( i K ¯ L ) ,
K ¯ = ( 4 π λ ) 2 ( n 2 1 ) + K 2
ρ ̂ ( L , K > 0 ) = [ K U ( K ) r ( K ) t * ( K ) Υ ] m ̂ * ( L , K ) .
h x , y = σ x , y + 1 K 0 { A x , y 2 π round [ ( A x , y A ) 2 π ] } ,
ς x , y ( K ) = arg [ q x , y ( K ) ] arg [ ρ x , y ( K ) ] .

Metrics