Abstract

We present an experimental study of tuning characteristics and wavelength stability of a 1490nm doped fiber external cavity laser. The standing wave in the erbium-doped fiber in an external-cavity laser causes spatial hole burning and absorption modulation and forms a dynamic grating. The dynamic grating can effectively suppress side modes and eliminate wavelength fluctuations in the laser. The operating wavelength of this hybrid laser is shown for the first time to our knowledge to be smoothly tunable by changing the semiconductor laser drive current or temperature.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Simonis and K. G. Purchase, IEEE Trans. Microwave Theory Tech. 38, 667 (1990).
    [CrossRef]
  2. D. Wake and K. Beacham, Proc. SPIE 5466, 1 (2004).
    [CrossRef]
  3. W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, Appl. Phys. Lett. 66, 3422 (1995).
    [CrossRef]
  4. F. N. Timofeev and R. Kashyap, Opt. Express 11, 515 (2003).
    [CrossRef] [PubMed]
  5. R. Liu, I. A. Kostko, K. Wu, and R. Kashyap, Opt. Express 14, 9042 (2006).
    [CrossRef] [PubMed]
  6. R. A. Betts, T. Tjugiarto, Y. L. Xue, and P. L. Chu, IEEE J. Quantum Electron. 27, 908 (1991).
    [CrossRef]
  7. M. Janos and S. C. Guy, J. Lightwave Technol. 16, 542 (1998).
    [CrossRef]
  8. E. Desurvire, J. Lightwave Technol. 8, 1517 (1990).
    [CrossRef]
  9. R. N. Liu, I. A. Kostko, K. Wu, R. Kashyap, and P. Kiiveri, Opt. Commun. 255, 65 (2005).
    [CrossRef]
  10. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  11. I. Kostko and R. Kashyap, Opt. Express 14, 2706 (2006).
    [CrossRef] [PubMed]
  12. R. M. Ribeiro, I. A. Kostko, and R. Kashyap, J. Lightwave Technol. 24, 4380 (2006).
    [CrossRef]
  13. A. Deninger, T. Heine, and F. Lison, Presented at European Quantum Electronics Conference 208 (2005).
  14. http://www.laser2000.co.uk/lasers/modules/semicon.htm

2006 (3)

2005 (1)

R. N. Liu, I. A. Kostko, K. Wu, R. Kashyap, and P. Kiiveri, Opt. Commun. 255, 65 (2005).
[CrossRef]

2004 (1)

D. Wake and K. Beacham, Proc. SPIE 5466, 1 (2004).
[CrossRef]

2003 (1)

1998 (1)

1995 (1)

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, Appl. Phys. Lett. 66, 3422 (1995).
[CrossRef]

1991 (1)

R. A. Betts, T. Tjugiarto, Y. L. Xue, and P. L. Chu, IEEE J. Quantum Electron. 27, 908 (1991).
[CrossRef]

1990 (2)

E. Desurvire, J. Lightwave Technol. 8, 1517 (1990).
[CrossRef]

G. J. Simonis and K. G. Purchase, IEEE Trans. Microwave Theory Tech. 38, 667 (1990).
[CrossRef]

Beacham, K.

D. Wake and K. Beacham, Proc. SPIE 5466, 1 (2004).
[CrossRef]

Betts, R. A.

R. A. Betts, T. Tjugiarto, Y. L. Xue, and P. L. Chu, IEEE J. Quantum Electron. 27, 908 (1991).
[CrossRef]

Chu, P. L.

R. A. Betts, T. Tjugiarto, Y. L. Xue, and P. L. Chu, IEEE J. Quantum Electron. 27, 908 (1991).
[CrossRef]

Deninger, A.

A. Deninger, T. Heine, and F. Lison, Presented at European Quantum Electronics Conference 208 (2005).

Desurvire, E.

E. Desurvire, J. Lightwave Technol. 8, 1517 (1990).
[CrossRef]

Farries, M. C.

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, Appl. Phys. Lett. 66, 3422 (1995).
[CrossRef]

Guy, S. C.

Heine, T.

A. Deninger, T. Heine, and F. Lison, Presented at European Quantum Electronics Conference 208 (2005).

Janos, M.

Kashyap, R.

Kiiveri, P.

R. N. Liu, I. A. Kostko, K. Wu, R. Kashyap, and P. Kiiveri, Opt. Commun. 255, 65 (2005).
[CrossRef]

Koren, U.

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, Appl. Phys. Lett. 66, 3422 (1995).
[CrossRef]

Kostko, I.

Kostko, I. A.

Laming, R. I.

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, Appl. Phys. Lett. 66, 3422 (1995).
[CrossRef]

Lison, F.

A. Deninger, T. Heine, and F. Lison, Presented at European Quantum Electronics Conference 208 (2005).

Liu, R.

Liu, R. N.

R. N. Liu, I. A. Kostko, K. Wu, R. Kashyap, and P. Kiiveri, Opt. Commun. 255, 65 (2005).
[CrossRef]

Loh, W. H.

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, Appl. Phys. Lett. 66, 3422 (1995).
[CrossRef]

Purchase, K. G.

G. J. Simonis and K. G. Purchase, IEEE Trans. Microwave Theory Tech. 38, 667 (1990).
[CrossRef]

Ribeiro, R. M.

Simonis, G. J.

G. J. Simonis and K. G. Purchase, IEEE Trans. Microwave Theory Tech. 38, 667 (1990).
[CrossRef]

Timofeev, F. N.

Tjugiarto, T.

R. A. Betts, T. Tjugiarto, Y. L. Xue, and P. L. Chu, IEEE J. Quantum Electron. 27, 908 (1991).
[CrossRef]

Wake, D.

D. Wake and K. Beacham, Proc. SPIE 5466, 1 (2004).
[CrossRef]

Wu, K.

R. Liu, I. A. Kostko, K. Wu, and R. Kashyap, Opt. Express 14, 9042 (2006).
[CrossRef] [PubMed]

R. N. Liu, I. A. Kostko, K. Wu, R. Kashyap, and P. Kiiveri, Opt. Commun. 255, 65 (2005).
[CrossRef]

Xue, Y. L.

R. A. Betts, T. Tjugiarto, Y. L. Xue, and P. L. Chu, IEEE J. Quantum Electron. 27, 908 (1991).
[CrossRef]

Zervas, M. N.

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, Appl. Phys. Lett. 66, 3422 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

W. H. Loh, R. I. Laming, M. N. Zervas, M. C. Farries, and U. Koren, Appl. Phys. Lett. 66, 3422 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Betts, T. Tjugiarto, Y. L. Xue, and P. L. Chu, IEEE J. Quantum Electron. 27, 908 (1991).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

G. J. Simonis and K. G. Purchase, IEEE Trans. Microwave Theory Tech. 38, 667 (1990).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (1)

R. N. Liu, I. A. Kostko, K. Wu, R. Kashyap, and P. Kiiveri, Opt. Commun. 255, 65 (2005).
[CrossRef]

Opt. Express (3)

Proc. SPIE (1)

D. Wake and K. Beacham, Proc. SPIE 5466, 1 (2004).
[CrossRef]

Other (3)

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

A. Deninger, T. Heine, and F. Lison, Presented at European Quantum Electronics Conference 208 (2005).

http://www.laser2000.co.uk/lasers/modules/semicon.htm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transient characteristics of the DFECL (the laser was switched on and off during the experiment).

Fig. 2
Fig. 2

Wavelength versus diode drive current: drive current increased (1, red triangles) and decreased (2, black squares).

Fig. 3
Fig. 3

DFECL wavelength shift with temperature at the LD drive current of 85 mA (black squares), 140 mA (red circles), and 190 mA (green triangles). Similar behavior was observed between 10 ° C and 40 ° C .

Metrics