Abstract

We apply two- and three-dimensional numerical calculations to study optical nanoantennae made of two coupled gold nanostructures, enclosing a single emitter in their gap. We show that, using structures manufacturable with today’s nanotechnology, it is possible to increase the radiative decay rate by three orders of magnitude while keeping a quantum efficiency larger than 80% in the near-infrared regime. We examine the competition between the radiative and nonradiative processes in the presence of the antennae as a function of wavelength and antenna geometry. Our results hold great promise for improving the quantum efficiency of poor emitters such as silicon nanocrystals or carbon nanotubes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-M. Gérard and B. Gayral, in Confined Photon Systems: Fundamentals and Applications, H.Benisty, J.-M.Gérard, R.Houdré, J.Rarity, and C.Weisbuch, eds. (Springer, 1999), pp. 331-351.
    [CrossRef]
  2. H. Schniepp and V. Sandoghdar, Phys. Rev. Lett. 89, 257403 (2002).
    [CrossRef] [PubMed]
  3. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  4. R. Ruppin, J. Chem. Phys. 76, 1681 (1982).
    [CrossRef]
  5. L. A. Blanco and F. J. Carcía de Abajo, Phys. Rev. B 69, 205414 (2004).
    [CrossRef]
  6. J. R. Lakowicz, Anal. Biochem. 337, 171 (2005).
    [CrossRef] [PubMed]
  7. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
    [CrossRef]
  8. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  9. P. Mühlschlegel, H.-J. Eisler, O. J. M. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
    [CrossRef] [PubMed]
  10. M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, Appl. Phys. Lett. 85, 3863 (2004).
    [CrossRef]
  11. L. Rogobete and C. Henkel, Phys. Rev. A 70, 063815 (2004).
    [CrossRef]
  12. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, Opt. Commun. 261, 368 (2006).
    [CrossRef]
  13. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).
    [CrossRef] [PubMed]
  14. CRC Handbook of Chemistry and Physics, 87th ed., http://www.hbcpnetbase.com (2006).
  15. J. Gersten and A. Nitzan, J. Chem. Phys. 75, 1139 (1981).
    [CrossRef]
  16. Purely electromagnetic calculations are known to become inaccurate at very small distances of the order of 1 nm due to local field effects so that we do not consider closer emitter-metal separations.
  17. L. Rogobete, F. Kaminski, A. Mohammadi, M. Agio, and V. Sandoghdar, manuscript in preparation.
  18. P. K. Aravind, A. Nitzan, and H. Metiu, Surf. Sci. 110, 189 (1981).
    [CrossRef]
  19. R. Carminati, M. Nieto-Versperinas, and J.-J. Greffet, J. Opt. Soc. Am. A 15, 706 (1998).
    [CrossRef]
  20. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).
    [CrossRef]
  21. E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, Nano Lett. 4, 327 (2004).
    [CrossRef]
  22. F. Kaminski, V. Sandoghdar, and M. Agio, J. Comput. Theor. Nanosci. 4, 635 (2007).
  23. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  24. Although our FDTD mesh pitch was as small as 1 nm, the results for d=10 nm might be inaccurate due to the slow convergence of the calculation .
  25. J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, Nano Lett. 5, 1768 (2005).
    [CrossRef] [PubMed]
  26. M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
    [CrossRef] [PubMed]

2007 (1)

F. Kaminski, V. Sandoghdar, and M. Agio, J. Comput. Theor. Nanosci. 4, 635 (2007).

2006 (2)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, Opt. Commun. 261, 368 (2006).
[CrossRef]

2005 (4)

J. R. Lakowicz, Anal. Biochem. 337, 171 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. M. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, Nano Lett. 5, 1768 (2005).
[CrossRef] [PubMed]

2004 (4)

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, Appl. Phys. Lett. 85, 3863 (2004).
[CrossRef]

L. Rogobete and C. Henkel, Phys. Rev. A 70, 063815 (2004).
[CrossRef]

L. A. Blanco and F. J. Carcía de Abajo, Phys. Rev. B 69, 205414 (2004).
[CrossRef]

E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, Nano Lett. 4, 327 (2004).
[CrossRef]

2003 (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).
[CrossRef]

2002 (3)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

H. Schniepp and V. Sandoghdar, Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef] [PubMed]

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

1998 (1)

1985 (1)

M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
[CrossRef]

1982 (1)

R. Ruppin, J. Chem. Phys. 76, 1681 (1982).
[CrossRef]

1981 (2)

J. Gersten and A. Nitzan, J. Chem. Phys. 75, 1139 (1981).
[CrossRef]

P. K. Aravind, A. Nitzan, and H. Metiu, Surf. Sci. 110, 189 (1981).
[CrossRef]

Agio, M.

F. Kaminski, V. Sandoghdar, and M. Agio, J. Comput. Theor. Nanosci. 4, 635 (2007).

L. Rogobete, F. Kaminski, A. Mohammadi, M. Agio, and V. Sandoghdar, manuscript in preparation.

Aravind, P. K.

P. K. Aravind, A. Nitzan, and H. Metiu, Surf. Sci. 110, 189 (1981).
[CrossRef]

Arias-Gonzalez, J. R.

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, Appl. Phys. Lett. 85, 3863 (2004).
[CrossRef]

Atwater, H. A.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, Nano Lett. 5, 1768 (2005).
[CrossRef] [PubMed]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).
[CrossRef]

Bachilo, S. M.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Bailey, R. C.

E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, Nano Lett. 4, 327 (2004).
[CrossRef]

Biteen, J. S.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, Nano Lett. 5, 1768 (2005).
[CrossRef] [PubMed]

Blanco, L. A.

L. A. Blanco and F. J. Carcía de Abajo, Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Boul, P. J.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Carcía de Abajo, F. J.

L. A. Blanco and F. J. Carcía de Abajo, Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Carminati, R.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, Opt. Commun. 261, 368 (2006).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, Appl. Phys. Lett. 85, 3863 (2004).
[CrossRef]

R. Carminati, M. Nieto-Versperinas, and J.-J. Greffet, J. Opt. Soc. Am. A 15, 706 (1998).
[CrossRef]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. M. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Gayral, B.

J.-M. Gérard and B. Gayral, in Confined Photon Systems: Fundamentals and Applications, H.Benisty, J.-M.Gérard, R.Houdré, J.Rarity, and C.Weisbuch, eds. (Springer, 1999), pp. 331-351.
[CrossRef]

Gérard, J.-M.

J.-M. Gérard and B. Gayral, in Confined Photon Systems: Fundamentals and Applications, H.Benisty, J.-M.Gérard, R.Houdré, J.Rarity, and C.Weisbuch, eds. (Springer, 1999), pp. 331-351.
[CrossRef]

Gersten, J.

J. Gersten and A. Nitzan, J. Chem. Phys. 75, 1139 (1981).
[CrossRef]

Greffet, J.-J.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, Opt. Commun. 261, 368 (2006).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, Appl. Phys. Lett. 85, 3863 (2004).
[CrossRef]

R. Carminati, M. Nieto-Versperinas, and J.-J. Greffet, J. Opt. Soc. Am. A 15, 706 (1998).
[CrossRef]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Hao, E.

E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, Nano Lett. 4, 327 (2004).
[CrossRef]

Haroz, E. H.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Hauge, R. H.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. M. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Henkel, C.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, Opt. Commun. 261, 368 (2006).
[CrossRef]

L. Rogobete and C. Henkel, Phys. Rev. A 70, 063815 (2004).
[CrossRef]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).
[CrossRef]

Huffman, C. B.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Hupp, J. T.

E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, Nano Lett. 4, 327 (2004).
[CrossRef]

Kaminski, F.

F. Kaminski, V. Sandoghdar, and M. Agio, J. Comput. Theor. Nanosci. 4, 635 (2007).

L. Rogobete, F. Kaminski, A. Mohammadi, M. Agio, and V. Sandoghdar, manuscript in preparation.

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Kittrell, C.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).
[CrossRef]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, Anal. Biochem. 337, 171 (2005).
[CrossRef] [PubMed]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).
[CrossRef]

Lewis, N. S.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, Nano Lett. 5, 1768 (2005).
[CrossRef] [PubMed]

Li, S.

E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, Nano Lett. 4, 327 (2004).
[CrossRef]

Ma, J.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Martin, O. J. M.

P. Mühlschlegel, H.-J. Eisler, O. J. M. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Metiu, H.

P. K. Aravind, A. Nitzan, and H. Metiu, Surf. Sci. 110, 189 (1981).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Mohammadi, A.

L. Rogobete, F. Kaminski, A. Mohammadi, M. Agio, and V. Sandoghdar, manuscript in preparation.

Moore, V. C.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Moskovits, M.

M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. M. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Nieto-Versperinas, M.

Nitzan, A.

J. Gersten and A. Nitzan, J. Chem. Phys. 75, 1139 (1981).
[CrossRef]

P. K. Aravind, A. Nitzan, and H. Metiu, Surf. Sci. 110, 189 (1981).
[CrossRef]

Noon, W. H.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

O'Connell, M. J.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Pacifici, D.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, Nano Lett. 5, 1768 (2005).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. M. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).
[CrossRef]

Rialon, K. L.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

L. Rogobete and C. Henkel, Phys. Rev. A 70, 063815 (2004).
[CrossRef]

L. Rogobete, F. Kaminski, A. Mohammadi, M. Agio, and V. Sandoghdar, manuscript in preparation.

Ruppin, R.

R. Ruppin, J. Chem. Phys. 76, 1681 (1982).
[CrossRef]

Sandoghdar, V.

F. Kaminski, V. Sandoghdar, and M. Agio, J. Comput. Theor. Nanosci. 4, 635 (2007).

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

H. Schniepp and V. Sandoghdar, Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef] [PubMed]

L. Rogobete, F. Kaminski, A. Mohammadi, M. Agio, and V. Sandoghdar, manuscript in preparation.

Schatz, G. C.

E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, Nano Lett. 4, 327 (2004).
[CrossRef]

Schniepp, H.

H. Schniepp and V. Sandoghdar, Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef] [PubMed]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Smalley, R. E.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Strano, M. S.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Thomas, M.

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, Appl. Phys. Lett. 85, 3863 (2004).
[CrossRef]

Vigoureux, J. M.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, Opt. Commun. 261, 368 (2006).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Weisman, R. B.

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Anal. Biochem. (1)

J. R. Lakowicz, Anal. Biochem. 337, 171 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, Appl. Phys. Lett. 85, 3863 (2004).
[CrossRef]

J. Chem. Phys. (2)

J. Gersten and A. Nitzan, J. Chem. Phys. 75, 1139 (1981).
[CrossRef]

R. Ruppin, J. Chem. Phys. 76, 1681 (1982).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

F. Kaminski, V. Sandoghdar, and M. Agio, J. Comput. Theor. Nanosci. 4, 635 (2007).

J. Opt. Soc. Am. A (1)

Nano Lett. (2)

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, Nano Lett. 5, 1768 (2005).
[CrossRef] [PubMed]

E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, Nano Lett. 4, 327 (2004).
[CrossRef]

Opt. Commun. (2)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).
[CrossRef]

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, Opt. Commun. 261, 368 (2006).
[CrossRef]

Phys. Rev. A (1)

L. Rogobete and C. Henkel, Phys. Rev. A 70, 063815 (2004).
[CrossRef]

Phys. Rev. B (1)

L. A. Blanco and F. J. Carcía de Abajo, Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Phys. Rev. Lett. (4)

H. Schniepp and V. Sandoghdar, Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
[CrossRef]

Science (2)

P. Mühlschlegel, H.-J. Eisler, O. J. M. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).
[CrossRef] [PubMed]

Surf. Sci. (1)

P. K. Aravind, A. Nitzan, and H. Metiu, Surf. Sci. 110, 189 (1981).
[CrossRef]

Other (6)

J.-M. Gérard and B. Gayral, in Confined Photon Systems: Fundamentals and Applications, H.Benisty, J.-M.Gérard, R.Houdré, J.Rarity, and C.Weisbuch, eds. (Springer, 1999), pp. 331-351.
[CrossRef]

Purely electromagnetic calculations are known to become inaccurate at very small distances of the order of 1 nm due to local field effects so that we do not consider closer emitter-metal separations.

L. Rogobete, F. Kaminski, A. Mohammadi, M. Agio, and V. Sandoghdar, manuscript in preparation.

CRC Handbook of Chemistry and Physics, 87th ed., http://www.hbcpnetbase.com (2006).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Although our FDTD mesh pitch was as small as 1 nm, the results for d=10 nm might be inaccurate due to the slow convergence of the calculation .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Normalized 2D radiative (solid curves) and non-radiative (dashed curves) decay rates for an emitter coupled to a gold sphere ( diameter = 24.5 nm ) (a) and to an ellipse (long axis = 60 nm , short axis = 10 nm ) (b). The emission wavelength is tuned to λ = 535 nm for the sphere and λ = 770 nm for the ellipse. The particles have the same area. Insets: normalized decay rates as a function of wavelength for a particle–emitter distance of 3 nm . The scattering cross sections of the systems are also plotted (dotted curves) to show their plasmon resonances for comparison. The emitter is oriented as shown in the graph.

Fig. 2
Fig. 2

2D-calculated normalized radiative decay rates (solid curves) and quantum efficiencies (dashed curves) for different gold nanoantennae. All structures have the same area ( A 491 nm 2 per particle) and a gap width of 6 nm . The emitter is placed at the center of the gap and oriented as shown in the graph.

Fig. 3
Fig. 3

3D-calculated normalized radiative decay rates for nanoantennae made of two prolate gold spheroids (long axis 120 nm , short axes 38 nm ). The legend gives the gap width d in nm. The emitter is placed at the center of the gap and oriented along the nanoantenna. The inset shows that the emission pattern remains dipolar.

Metrics