Abstract

We demonstrate the possibility of creating user-defined partially coherent light pulses by means of a slight modification of the direct space-to-time pulse shaper. Specifically, we generate a mutual coherence function that corresponds to the independent-elementary-pulse representation model. The theoretical limits in the parameter of global coherence and the efficiency of the system are studied. Our result opens the door to a new way of quantum control in laser-assisted chemical reactions, namely, control by partial coherence.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  2. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
    [CrossRef] [PubMed]
  3. W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
    [CrossRef] [PubMed]
  4. M. Shapiro and P. Braumer, Rep. Prog. Phys. 66, 859 (2003).
    [CrossRef]
  5. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
    [CrossRef] [PubMed]
  6. J.-C. Diels and J. Stone, Phys. Rev. A 31, 2397 (1985).
    [CrossRef] [PubMed]
  7. X. P. Jiang, M. Shapiro, and P. Brumer, J. Chem. Phys. 104, 607 (1996).
    [CrossRef]
  8. P. Vahimaa and J. Turunen, Opt. Express 14, 5007 (2006).
    [CrossRef] [PubMed]
  9. D. E. Leaird and A. M. Weiner, Opt. Lett. 24, 853 (1999).
    [CrossRef]
  10. D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
    [CrossRef]
  11. Compared with there is a difference in a minus sign, which comes from the fact that we consider propagation factors of the form exp[−i(ω0t−kz)].
  12. P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
    [CrossRef]
  13. L. Mandel and E. Wolf, Optical Cohrence and Quantum Optics (Cambridge U. Press, 1995), Sec. 5.4.3.
  14. S. A. Ponomarenko, G. P. Agrawal, and E. Wolf, Opt. Lett. 29, 394 (2004).
    [CrossRef] [PubMed]
  15. I. P. Christov, Opt. Acta 33, 63 (1986).
    [CrossRef]
  16. P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
    [CrossRef]

2006 (1)

2004 (1)

2003 (1)

M. Shapiro and P. Braumer, Rep. Prog. Phys. 66, 859 (2003).
[CrossRef]

2002 (1)

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

2001 (1)

D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
[CrossRef]

2000 (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

1999 (1)

1998 (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

1996 (1)

X. P. Jiang, M. Shapiro, and P. Brumer, J. Chem. Phys. 104, 607 (1996).
[CrossRef]

1993 (1)

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

1990 (1)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

1986 (1)

I. P. Christov, Opt. Acta 33, 63 (1986).
[CrossRef]

1985 (1)

J.-C. Diels and J. Stone, Phys. Rev. A 31, 2397 (1985).
[CrossRef] [PubMed]

1979 (1)

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Agrawal, G. P.

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Braumer, P.

M. Shapiro and P. Braumer, Rep. Prog. Phys. 66, 859 (2003).
[CrossRef]

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Brumer, P.

X. P. Jiang, M. Shapiro, and P. Brumer, J. Chem. Phys. 104, 607 (1996).
[CrossRef]

Christov, I. P.

I. P. Christov, Opt. Acta 33, 63 (1986).
[CrossRef]

Dahleh, M.

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

De Santis, P.

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Diels, J.-C.

J.-C. Diels and J. Stone, Phys. Rev. A 31, 2397 (1985).
[CrossRef] [PubMed]

Friberg, A. T.

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Gori, F.

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Guattari, G.

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Jiang, X. P.

X. P. Jiang, M. Shapiro, and P. Brumer, J. Chem. Phys. 104, 607 (1996).
[CrossRef]

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Leaird, D. E.

D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
[CrossRef]

D. E. Leaird and A. M. Weiner, Opt. Lett. 24, 853 (1999).
[CrossRef]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

Mandel, L.

L. Mandel and E. Wolf, Optical Cohrence and Quantum Optics (Cambridge U. Press, 1995), Sec. 5.4.3.

Nelson, K. A.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

Paakkonen, P.

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

Palma, C.

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Ponomarenko, S. A.

Rabitz, H.

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Shapiro, M.

M. Shapiro and P. Braumer, Rep. Prog. Phys. 66, 859 (2003).
[CrossRef]

X. P. Jiang, M. Shapiro, and P. Brumer, J. Chem. Phys. 104, 607 (1996).
[CrossRef]

Stone, J.

J.-C. Diels and J. Stone, Phys. Rev. A 31, 2397 (1985).
[CrossRef] [PubMed]

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Turunen, J.

P. Vahimaa and J. Turunen, Opt. Express 14, 5007 (2006).
[CrossRef] [PubMed]

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

Vahimaa, P.

P. Vahimaa and J. Turunen, Opt. Express 14, 5007 (2006).
[CrossRef] [PubMed]

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

Warren, W. S.

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

Weiner, A. M.

D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
[CrossRef]

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

D. E. Leaird and A. M. Weiner, Opt. Lett. 24, 853 (1999).
[CrossRef]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

Wiederrecht, G. P.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

Wolf, E.

S. A. Ponomarenko, G. P. Agrawal, and E. Wolf, Opt. Lett. 29, 394 (2004).
[CrossRef] [PubMed]

L. Mandel and E. Wolf, Optical Cohrence and Quantum Optics (Cambridge U. Press, 1995), Sec. 5.4.3.

Wyrowski, F.

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. E. Leaird and A. M. Weiner, IEEE J. Quantum Electron. 37, 494 (2001).
[CrossRef]

J. Chem. Phys. (1)

X. P. Jiang, M. Shapiro, and P. Brumer, J. Chem. Phys. 104, 607 (1996).
[CrossRef]

Opt. Acta (1)

I. P. Christov, Opt. Acta 33, 63 (1986).
[CrossRef]

Opt. Commun. (2)

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

J.-C. Diels and J. Stone, Phys. Rev. A 31, 2397 (1985).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

M. Shapiro and P. Braumer, Rep. Prog. Phys. 66, 859 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Science (3)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Other (2)

Compared with there is a difference in a minus sign, which comes from the fact that we consider propagation factors of the form exp[−i(ω0t−kz)].

L. Mandel and E. Wolf, Optical Cohrence and Quantum Optics (Cambridge U. Press, 1995), Sec. 5.4.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Scheme of the modified DST pulse shaper.

Fig. 2
Fig. 2

Inverse of the output global degree of coherence for two different Gaussian input pulses of 50 fs (green dashed upper curve) and 200 fs (red dashed lower curve) versus the slit size x 0 . Energy efficiency in terms of the slit size for 50 fs (green solid lower line) and 200 fs (red solid upper line).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

e out ( t ) = e in ( t ) h [ ( β γ ) t ] .
Γ out ( t 1 , t 2 ) = e in * ( t 1 t ) e in ( t 2 t ) × h ˜ * [ ( β γ ) t ] h ˜ [ ( β γ ) t ] d t d t ,
h ˜ * ( x 1 ) h ˜ ( x 2 ) = h ( x 1 ) 2 δ ( x 2 x 1 ) ,
Γ out ( t 1 , t 2 ) = ( β γ ) e in * ( t 1 t ) e in ( t 2 t ) h [ ( β γ ) t ] 2 d t .
γ out ( t 1 , t 2 ) = Γ out ( t 1 , t 2 ) [ I out ( t 1 ) I out ( t 2 ) ] 1 2 .
W out ( ω 1 , ω 2 ) = ( β γ ) E in * ( ω 1 ) E in ( ω 2 ) H ( ω 2 ω 1 ) ,
Γ out ( t 1 , t 2 ) e in * ( t 1 t ) e in ( t 2 t ) × A [ ( k x 0 γ f ) t ] h [ ( β γ ) t ] 2 d t .
r = 2 σ 0 ( β γ ) [ 1 w 2 + 1 w m 2 + ( x 0 k f β ) 2 ] 1 2 ,

Metrics