Abstract

A simple method to precisely measure fiber length has been experimentally demonstrated by using a mode-locked fiber laser configuration. Since the transit time in a cavity is exactly proportional to the cavity length, it is easy to obtain the fiber length from the generation of mode-locked pulses in the fiber laser with a long-range nonlinear optical loop mirror that includes the measured fiber. Our new method has a large measurement range, over hundreds of kilometers, and a high resolution, of the order of centimeters, as well as no measurement dead zone.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, IEEE Trans. Microwave Theory Tech. MTT-30, 1487 (1982).
    [CrossRef]
  2. Y. Gottesman, E. V. K. Rao, H. Sillard, and J. Jacquet, J. Lightwave Technol. 20, 489 (2002).
    [CrossRef]
  3. R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
    [CrossRef]
  4. Y. Katsuyama, J. Lightwave Technol. 13, 6 (1995).
    [CrossRef]
  5. R. C. Youngquist, S. Carr, and D. E. N. Davies, Opt. Lett. 12, 158 (1987).
    [CrossRef] [PubMed]
  6. K. Takada, H. Yamada, Y. Hibino, and S. Mitachi, Electron. Lett. 31, 1565 (1995).
    [CrossRef]
  7. H. Ghafoori-Shiraz and T. Okoshi, Opt. Lett. 10, 160 (1985).
    [CrossRef] [PubMed]
  8. H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, J. Lightwave Technol. 7, 1225 (1989).
    [CrossRef]
  9. B. Jia and L. Hu, Microwave Opt. Technol. Lett. 22, 231 (1999).
    [CrossRef]
  10. B. Qi, A. Tausz, L. Qian, and H. K. Lo, Opt. Lett. 30, 3287 (2005).
    [CrossRef]
  11. N. Finlayson, B. K. Nayar, and N. J. Doran, Electron. Lett. 27, 1209 (1991).
    [CrossRef]
  12. Y. J. Song, L. Zhan, J. H. Ji, Q. Li, and Y. X. Xia, 31st European Conference on Optical Communication (ECOC) Proceedings (Institution of Electrical Engineers, 2005), Vol. 3, paper We4.P.064, p. 629.

2005 (1)

2002 (1)

1999 (1)

B. Jia and L. Hu, Microwave Opt. Technol. Lett. 22, 231 (1999).
[CrossRef]

1995 (2)

Y. Katsuyama, J. Lightwave Technol. 13, 6 (1995).
[CrossRef]

K. Takada, H. Yamada, Y. Hibino, and S. Mitachi, Electron. Lett. 31, 1565 (1995).
[CrossRef]

1994 (1)

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
[CrossRef]

1991 (1)

N. Finlayson, B. K. Nayar, and N. J. Doran, Electron. Lett. 27, 1209 (1991).
[CrossRef]

1989 (1)

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, J. Lightwave Technol. 7, 1225 (1989).
[CrossRef]

1987 (1)

1985 (1)

1982 (1)

D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, IEEE Trans. Microwave Theory Tech. MTT-30, 1487 (1982).
[CrossRef]

Beaud, P.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, J. Lightwave Technol. 7, 1225 (1989).
[CrossRef]

Carr, S.

Davies, D. E. N.

Doran, N. J.

N. Finlayson, B. K. Nayar, and N. J. Doran, Electron. Lett. 27, 1209 (1991).
[CrossRef]

Finlayson, N.

N. Finlayson, B. K. Nayar, and N. J. Doran, Electron. Lett. 27, 1209 (1991).
[CrossRef]

Ghafoori-Shiraz, H.

Gilgen, H. H.

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
[CrossRef]

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, J. Lightwave Technol. 7, 1225 (1989).
[CrossRef]

Gisin, N.

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
[CrossRef]

Gottesman, Y.

Hibino, Y.

K. Takada, H. Yamada, Y. Hibino, and S. Mitachi, Electron. Lett. 31, 1565 (1995).
[CrossRef]

Hodel, W.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, J. Lightwave Technol. 7, 1225 (1989).
[CrossRef]

Hu, L.

B. Jia and L. Hu, Microwave Opt. Technol. Lett. 22, 231 (1999).
[CrossRef]

Jacquet, J.

Ji, J. H.

Y. J. Song, L. Zhan, J. H. Ji, Q. Li, and Y. X. Xia, 31st European Conference on Optical Communication (ECOC) Proceedings (Institution of Electrical Engineers, 2005), Vol. 3, paper We4.P.064, p. 629.

Jia, B.

B. Jia and L. Hu, Microwave Opt. Technol. Lett. 22, 231 (1999).
[CrossRef]

Katsuyama, Y.

Y. Katsuyama, J. Lightwave Technol. 13, 6 (1995).
[CrossRef]

Kuhl, J. F.

D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, IEEE Trans. Microwave Theory Tech. MTT-30, 1487 (1982).
[CrossRef]

Li, Q.

Y. J. Song, L. Zhan, J. H. Ji, Q. Li, and Y. X. Xia, 31st European Conference on Optical Communication (ECOC) Proceedings (Institution of Electrical Engineers, 2005), Vol. 3, paper We4.P.064, p. 629.

Lo, H. K.

Mettler, S. C.

D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, IEEE Trans. Microwave Theory Tech. MTT-30, 1487 (1982).
[CrossRef]

Mitachi, S.

K. Takada, H. Yamada, Y. Hibino, and S. Mitachi, Electron. Lett. 31, 1565 (1995).
[CrossRef]

Nayar, B. K.

N. Finlayson, B. K. Nayar, and N. J. Doran, Electron. Lett. 27, 1209 (1991).
[CrossRef]

Novak, R. P.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, J. Lightwave Technol. 7, 1225 (1989).
[CrossRef]

Okoshi, T.

Passy, R.

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
[CrossRef]

Philen, D. L.

D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, IEEE Trans. Microwave Theory Tech. MTT-30, 1487 (1982).
[CrossRef]

Qi, B.

Qian, L.

Rao, E. V. K.

Salathe, R. P.

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, J. Lightwave Technol. 7, 1225 (1989).
[CrossRef]

Sillard, H.

Song, Y. J.

Y. J. Song, L. Zhan, J. H. Ji, Q. Li, and Y. X. Xia, 31st European Conference on Optical Communication (ECOC) Proceedings (Institution of Electrical Engineers, 2005), Vol. 3, paper We4.P.064, p. 629.

Takada, K.

K. Takada, H. Yamada, Y. Hibino, and S. Mitachi, Electron. Lett. 31, 1565 (1995).
[CrossRef]

Tausz, A.

von der Weid, J. P.

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
[CrossRef]

White, I. A.

D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, IEEE Trans. Microwave Theory Tech. MTT-30, 1487 (1982).
[CrossRef]

Xia, Y. X.

Y. J. Song, L. Zhan, J. H. Ji, Q. Li, and Y. X. Xia, 31st European Conference on Optical Communication (ECOC) Proceedings (Institution of Electrical Engineers, 2005), Vol. 3, paper We4.P.064, p. 629.

Yamada, H.

K. Takada, H. Yamada, Y. Hibino, and S. Mitachi, Electron. Lett. 31, 1565 (1995).
[CrossRef]

Youngquist, R. C.

Zhan, L.

Y. J. Song, L. Zhan, J. H. Ji, Q. Li, and Y. X. Xia, 31st European Conference on Optical Communication (ECOC) Proceedings (Institution of Electrical Engineers, 2005), Vol. 3, paper We4.P.064, p. 629.

Electron. Lett. (2)

K. Takada, H. Yamada, Y. Hibino, and S. Mitachi, Electron. Lett. 31, 1565 (1995).
[CrossRef]

N. Finlayson, B. K. Nayar, and N. J. Doran, Electron. Lett. 27, 1209 (1991).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, IEEE Trans. Microwave Theory Tech. MTT-30, 1487 (1982).
[CrossRef]

J. Lightwave Technol. (4)

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994).
[CrossRef]

Y. Katsuyama, J. Lightwave Technol. 13, 6 (1995).
[CrossRef]

H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, J. Lightwave Technol. 7, 1225 (1989).
[CrossRef]

Y. Gottesman, E. V. K. Rao, H. Sillard, and J. Jacquet, J. Lightwave Technol. 20, 489 (2002).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

B. Jia and L. Hu, Microwave Opt. Technol. Lett. 22, 231 (1999).
[CrossRef]

Opt. Lett. (3)

Other (1)

Y. J. Song, L. Zhan, J. H. Ji, Q. Li, and Y. X. Xia, 31st European Conference on Optical Communication (ECOC) Proceedings (Institution of Electrical Engineers, 2005), Vol. 3, paper We4.P.064, p. 629.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of mode-locking method to measure the fiber length. WDM, 980 1550 nm wavelength-division multiplexer.

Fig. 2
Fig. 2

Pulse stable under the different frequencies. (a) The fundamental frequency υ, (b) second harmonic 2 υ , (c) third harmonic 3 υ , (d) the fourteenth harmonic 14 υ .

Fig. 3
Fig. 3

Pulse period under various 980 nm pump powers.

Fig. 4
Fig. 4

Relationship between the transit time variation and the length reduction (experiment repeated five times).

Fig. 5
Fig. 5

Transit time variation when the length variation is 2, 5, and 10 cm .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

v = q ( c n L ) ,
T = 1 v = n L q c ,
L = q ( c T n ) .

Metrics