Abstract

We propose and demonstrate generation of an in-phase optical pulse train from an optical beat signal. The proposed method is based on four-wave mixing occurring between the two continuous waves of the beat signal and on spectral filtering to shape the spectrum to be symmetric about the carrier frequency. We perform an experiment to verify the proposed method and obtain a 1.5ps width in-phase pulse train from a 160GHz beat signal. Furthermore, we employ a pulse compression scheme to reshape and compress the obtained pulse train, and we show that a 160GHz repeating, 0.7ps FWHM, nearly transform-limited, in-phase sech pulse train is successfully generated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
    [CrossRef]
  2. S. Pitois, J. Fatome, and G. Millot, Opt. Lett. 27, 1729 (2002).
    [CrossRef]
  3. K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, Electron. Lett. 41, 688 (2005).
    [CrossRef]
  4. Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, Electron. Lett. 41, 1048 (2005).
    [CrossRef]
  5. S. Takasaka, Y. Ozeki, S. Namiki, and M. Sakano, IEEE Photon. Technol. Lett. 18, 2457 (2006).
    [CrossRef]
  6. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001), Chap. 6.
  7. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001), Chap. 5.
  8. A. H. Gnauck and P. J. Winzer, J. Lightwave Technol. 23, 115 (2005).
    [CrossRef]
  9. N. Akhmediev and A. Ankiewicz, Opt. Lett. 19, 545 (1994).
    [CrossRef] [PubMed]
  10. M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, J. Lightwave Technol. 23, 3615 (2005).
    [CrossRef]
  11. T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, J. Lightwave Technol. 24, 2510 (2006).
    [CrossRef]

2006 (2)

S. Takasaka, Y. Ozeki, S. Namiki, and M. Sakano, IEEE Photon. Technol. Lett. 18, 2457 (2006).
[CrossRef]

T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, J. Lightwave Technol. 24, 2510 (2006).
[CrossRef]

2005 (4)

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, Electron. Lett. 41, 688 (2005).
[CrossRef]

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, Electron. Lett. 41, 1048 (2005).
[CrossRef]

A. H. Gnauck and P. J. Winzer, J. Lightwave Technol. 23, 115 (2005).
[CrossRef]

M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, J. Lightwave Technol. 23, 3615 (2005).
[CrossRef]

2002 (1)

1994 (1)

1991 (1)

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001), Chap. 6.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001), Chap. 5.

Akhmediev, N.

Ankiewicz, A.

Chernikov, S. V.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Dianov, E. M.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Fatome, J.

Gnauck, A. H.

Hiroishi, J.

M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, J. Lightwave Technol. 23, 3615 (2005).
[CrossRef]

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, Electron. Lett. 41, 688 (2005).
[CrossRef]

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, Electron. Lett. 41, 1048 (2005).
[CrossRef]

Igarashi, K.

T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, J. Lightwave Technol. 24, 2510 (2006).
[CrossRef]

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, Electron. Lett. 41, 688 (2005).
[CrossRef]

Inoue, T.

Mamyshev, P. V.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Millot, G.

Namiki, S.

S. Takasaka, Y. Ozeki, S. Namiki, and M. Sakano, IEEE Photon. Technol. Lett. 18, 2457 (2006).
[CrossRef]

T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, J. Lightwave Technol. 24, 2510 (2006).
[CrossRef]

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, Electron. Lett. 41, 688 (2005).
[CrossRef]

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, Electron. Lett. 41, 1048 (2005).
[CrossRef]

Ozeki, Y.

S. Takasaka, Y. Ozeki, S. Namiki, and M. Sakano, IEEE Photon. Technol. Lett. 18, 2457 (2006).
[CrossRef]

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, Electron. Lett. 41, 1048 (2005).
[CrossRef]

Pitois, S.

Sakano, M.

S. Takasaka, Y. Ozeki, S. Namiki, and M. Sakano, IEEE Photon. Technol. Lett. 18, 2457 (2006).
[CrossRef]

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, Electron. Lett. 41, 1048 (2005).
[CrossRef]

Sugizaki, R.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, Electron. Lett. 41, 1048 (2005).
[CrossRef]

M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, J. Lightwave Technol. 23, 3615 (2005).
[CrossRef]

Tadakuma, M.

Takahashi, M.

Takasaka, S.

S. Takasaka, Y. Ozeki, S. Namiki, and M. Sakano, IEEE Photon. Technol. Lett. 18, 2457 (2006).
[CrossRef]

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, Electron. Lett. 41, 1048 (2005).
[CrossRef]

Taniguchi, Y.

Tobioka, H.

Winzer, P. J.

Yagi, T.

M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, J. Lightwave Technol. 23, 3615 (2005).
[CrossRef]

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, Electron. Lett. 41, 688 (2005).
[CrossRef]

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, Electron. Lett. 41, 1048 (2005).
[CrossRef]

Electron. Lett. (2)

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, Electron. Lett. 41, 688 (2005).
[CrossRef]

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Sugizaki, T. Yagi, M. Sakano, and S. Namiki, Electron. Lett. 41, 1048 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Takasaka, Y. Ozeki, S. Namiki, and M. Sakano, IEEE Photon. Technol. Lett. 18, 2457 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Lett. (2)

Other (2)

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001), Chap. 6.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for generating an in-phase pulse train from a beat signal and schematic diagrams of the waveforms.

Fig. 2
Fig. 2

(a) Autocorrelation traces and (b) optical spectra of the experimentally observed pulse trains. The numbering (i)–(iv) corresponds to the schematic diagrams shown in Fig. 1. Insets, same data on a log scale. The dashed curve in (b) panel (ii) represents the measured power transmittance of BPF 2 . The dotted curve shown in (a) panel (iv) is a sech-fitting function of the waveform.

Fig. 3
Fig. 3

Profiles of the nonlinearity (left axis) and dispersion (right axis) of the designed four-step CPF.

Fig. 4
Fig. 4

(a) Autocorrelation trace and (b) optical spectrum of the pulse train measured at the output of the four-step CPF. Dotted curves, sech-fitting functions. Insets, same data on a log scale.

Tables (1)

Tables Icon

Table 1 Fiber Parameters in the Experiment

Metrics