Abstract

Strong mode selection through an enhanced interferential coupling effect was observed in a thin dielectric-coated layered cylindrical microcavity laser. The strong coupling effect was induced owing to an enhanced reflectivity of around 50% at the dielectric-coated inner boundary of a fused silica capillary filled with a dye-doped liquid. At an optimized coating thickness of about 0.4μm, the lasing peaks appeared only at the wavelengths corresponding to the constructive interference condition, whereas those from a bare capillary were weakly modulated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
    [CrossRef]
  2. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, Appl. Phys. Lett. 84, 1037 (2004).
    [CrossRef]
  3. J. E. Heebner, N. N. Lepeshkin, A. Schweinsber, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, Opt. Lett. 29, 769 (2004).
    [CrossRef] [PubMed]
  4. Y. Huang, G. T. Paloczi, J. Scheuer, and A. Yariv, Opt. Express 11, 2452 (2003).
    [CrossRef] [PubMed]
  5. M. V. Artemyev, U. Woggon, and R. Wannemacher, Appl. Phys. Lett. 78, 1032 (2001).
    [CrossRef]
  6. H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Opt. Commun. 235, 401 (2004).
    [CrossRef]
  7. J. C. Knight, H. S. T. Driver, and G. N. Robertson, Opt. Lett. 18, 1296 (1993).
    [CrossRef] [PubMed]
  8. H. J. Moon and K. An, Appl. Phys. Lett. 80, 3250 (2002).
    [CrossRef]
  9. M. Born and E. Wolf, Principles of Optics (Cambrdge U. Press, 1999), p. 65.
  10. H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Appl. Phys. Lett. 84, 4547 (2004).
    [CrossRef]
  11. J. H. Lowry, J. S. Mendlowitz, and N. S. Subramanian, Opt. Eng. 31, 1982 (1992).
    [CrossRef]

2004 (4)

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, Appl. Phys. Lett. 84, 1037 (2004).
[CrossRef]

J. E. Heebner, N. N. Lepeshkin, A. Schweinsber, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, Opt. Lett. 29, 769 (2004).
[CrossRef] [PubMed]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Opt. Commun. 235, 401 (2004).
[CrossRef]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Appl. Phys. Lett. 84, 4547 (2004).
[CrossRef]

2003 (1)

2002 (1)

H. J. Moon and K. An, Appl. Phys. Lett. 80, 3250 (2002).
[CrossRef]

2001 (1)

M. V. Artemyev, U. Woggon, and R. Wannemacher, Appl. Phys. Lett. 78, 1032 (2001).
[CrossRef]

1993 (1)

1992 (2)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

J. H. Lowry, J. S. Mendlowitz, and N. S. Subramanian, Opt. Eng. 31, 1982 (1992).
[CrossRef]

An, K.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Opt. Commun. 235, 401 (2004).
[CrossRef]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Appl. Phys. Lett. 84, 4547 (2004).
[CrossRef]

H. J. Moon and K. An, Appl. Phys. Lett. 80, 3250 (2002).
[CrossRef]

Artemyev, M. V.

M. V. Artemyev, U. Woggon, and R. Wannemacher, Appl. Phys. Lett. 78, 1032 (2001).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambrdge U. Press, 1999), p. 65.

Boyd, R. W.

Driver, H. S. T.

Grover, R.

Heebner, J. E.

Ho, P.-T.

Huang, Y.

Kalkman, J.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, Appl. Phys. Lett. 84, 1037 (2004).
[CrossRef]

Kippenberg, T. J.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, Appl. Phys. Lett. 84, 1037 (2004).
[CrossRef]

Knight, J. C.

Lee, J. H.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Opt. Commun. 235, 401 (2004).
[CrossRef]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Appl. Phys. Lett. 84, 4547 (2004).
[CrossRef]

Lee, S. B.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Appl. Phys. Lett. 84, 4547 (2004).
[CrossRef]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Opt. Commun. 235, 401 (2004).
[CrossRef]

Lepeshkin, N. N.

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Lowry, J. H.

J. H. Lowry, J. S. Mendlowitz, and N. S. Subramanian, Opt. Eng. 31, 1982 (1992).
[CrossRef]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Mendlowitz, J. S.

J. H. Lowry, J. S. Mendlowitz, and N. S. Subramanian, Opt. Eng. 31, 1982 (1992).
[CrossRef]

Min, B.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, Appl. Phys. Lett. 84, 1037 (2004).
[CrossRef]

Moon, H. J.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Opt. Commun. 235, 401 (2004).
[CrossRef]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Appl. Phys. Lett. 84, 4547 (2004).
[CrossRef]

H. J. Moon and K. An, Appl. Phys. Lett. 80, 3250 (2002).
[CrossRef]

Paloczi, G. T.

Park, G. W.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Appl. Phys. Lett. 84, 4547 (2004).
[CrossRef]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Opt. Commun. 235, 401 (2004).
[CrossRef]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Polman, A.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, Appl. Phys. Lett. 84, 1037 (2004).
[CrossRef]

Robertson, G. N.

Scheuer, J.

Schweinsber, A.

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Subramanian, N. S.

J. H. Lowry, J. S. Mendlowitz, and N. S. Subramanian, Opt. Eng. 31, 1982 (1992).
[CrossRef]

Vahala, K. J.

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, Appl. Phys. Lett. 84, 1037 (2004).
[CrossRef]

Wannemacher, R.

M. V. Artemyev, U. Woggon, and R. Wannemacher, Appl. Phys. Lett. 78, 1032 (2001).
[CrossRef]

Wicks, G. W.

Woggon, U.

M. V. Artemyev, U. Woggon, and R. Wannemacher, Appl. Phys. Lett. 78, 1032 (2001).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambrdge U. Press, 1999), p. 65.

Yariv, A.

Appl. Phys. Lett. (5)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, Appl. Phys. Lett. 84, 1037 (2004).
[CrossRef]

M. V. Artemyev, U. Woggon, and R. Wannemacher, Appl. Phys. Lett. 78, 1032 (2001).
[CrossRef]

H. J. Moon and K. An, Appl. Phys. Lett. 80, 3250 (2002).
[CrossRef]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Appl. Phys. Lett. 84, 4547 (2004).
[CrossRef]

Opt. Commun. (1)

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, Opt. Commun. 235, 401 (2004).
[CrossRef]

Opt. Eng. (1)

J. H. Lowry, J. S. Mendlowitz, and N. S. Subramanian, Opt. Eng. 31, 1982 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (1)

M. Born and E. Wolf, Principles of Optics (Cambrdge U. Press, 1999), p. 65.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of mode selection in a layered microcavity. (b) Multiple reflection–refraction in a thin flat coating.

Fig. 2
Fig. 2

Calculated total reflectivity with respect to θ 1 at various d from a capillary coated with AF 1600. ( 2 a = 250 μ m , 2 b = 320 μ m ). The dotted vertical line indicates θ 1 = 71.4 ° , at which ψ = ϕ .

Fig. 3
Fig. 3

Typical lasing spectrum from a bare capillary with no coating.

Fig. 4
Fig. 4

Typical lasing spectrum from a capillary coated by AF 1600 with a thickness of 0.4 μ m .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r = r 13 + r 32 e 2 j β 1 + r 13 r 32 e 2 j β ,
r 13 = m 1 cos θ 1 m 3 cos θ 3 m 1 cos θ 1 + m 3 cos θ 3 = m 1 cos θ 1 m 3 2 m 1 2 sin θ 1 m 1 cos θ 1 + m 3 2 m 1 2 sin θ 1 ,
R = r 2 = r 13 2 + r 32 2 + 2 r 13 r 32 cos 2 β 1 + r 13 2 r 32 2 + 2 r 13 r 32 cos 2 β .

Metrics