Abstract

We describe a highly efficient monolithic, Q-switched, nanosecond optical parametric oscillator based on a magnesium-oxide-doped periodically poled lithium niobate crystal and containing multiple quasi-phase-matched gratings. The crystal consisted of a single unchirped grating and five gratings containing progressively increasing amounts of longitudinal chirp. The monolithic design makes the device highly compact, stable, and robust, and it demonstrated a pump-to-signal conversion efficiency of around 50%, generating 50μJ pulses at 1.55μm with a spectral bandwidth of 20nm. Sonogram traces are presented showing the effect of crystal chirp on the temporal and spectral performance.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O'Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, Appl. Opt. 41, 7671 (2002).
    [CrossRef]
  2. B. W. Schilling, D. N. Barr, G. C. Templeton, L. J. Mizerka, and C. W. Trussell, Appl. Opt. 41, 2791 (2002).
    [CrossRef] [PubMed]
  3. J. Busck and H. Heiselberg, Appl. Opt. 43, 4705 (2004).
    [CrossRef] [PubMed]
  4. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).
  5. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, and R. L. Byer, Opt. Lett. 20, 52 (1995).
    [CrossRef] [PubMed]
  6. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, Opt. Lett. 22, 1341 (1997).
    [CrossRef]
  7. T. Beddard, M. Ebrahimzadeh, T. D. Reid, and W. Sibbett, Opt. Lett. 25, 1052 (2000).
    [CrossRef]
  8. K. A. Tillman, D. T. Reid, D. Artigas, J. Hellstrom, V. Pasiskevicius, and F. Laurell, J. Opt. Soc. Am. B 20, 1309 (2003).
    [CrossRef]
  9. K. A. Tillman, D. T. Reid, D. Artigas, J. Hellstrom, V. Pasiskevicius, and F. Laurell, Opt. Lett. 28, 543 (2003).
    [CrossRef] [PubMed]
  10. I. Baker, S. Duncan, and J. Copley, Proc. SPIE 5406, 133 (2004).
    [CrossRef]
  11. L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
    [CrossRef] [PubMed]
  12. S. T. Yang, R. C. Eckardt, and R. L. Byer, J. Opt. Soc. Am. B 10, 1684 (1993).
    [CrossRef]
  13. E. B. Treacy, J. Appl. Phys. 42, 3848 (1971).
    [CrossRef]
  14. J. A. C. Terry, M. H. Dunn, and C. F. Rae, J. Opt. Soc. Am. B 22, 2208 (2005).
    [CrossRef]

2005 (1)

2004 (2)

J. Busck and H. Heiselberg, Appl. Opt. 43, 4705 (2004).
[CrossRef] [PubMed]

I. Baker, S. Duncan, and J. Copley, Proc. SPIE 5406, 133 (2004).
[CrossRef]

2003 (2)

2002 (2)

2000 (1)

1997 (1)

1996 (1)

1995 (1)

1993 (1)

1971 (1)

E. B. Treacy, J. Appl. Phys. 42, 3848 (1971).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).

Albota, M. A.

Arbore, M. A.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).

Artigas, D.

Aull, B. F.

Baker, I.

I. Baker, S. Duncan, and J. Copley, Proc. SPIE 5406, 133 (2004).
[CrossRef]

Barr, D. N.

Beddard, T.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).

Bosenberg, W. R.

Busck, J.

Byer, R. L.

Carlson, R. R.

Chou, M. H.

Copley, J.

I. Baker, S. Duncan, and J. Copley, Proc. SPIE 5406, 133 (2004).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).

Duncan, S.

I. Baker, S. Duncan, and J. Copley, Proc. SPIE 5406, 133 (2004).
[CrossRef]

Dunn, M. H.

Ebrahimzadeh, M.

Eckardt, R. C.

Fejer, M. M.

Fouche, D. G.

Galvanauskas, A.

Harter, D.

Heinrichs, R. M.

Heiselberg, H.

Hellstrom, J.

Kocher, D. G.

Laurell, F.

Miller, G. D.

Mizerka, L. J.

Mooney, J.

Myers, L. E.

O'Brien, M. E.

Pasiskevicius, V.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).

Player, B. E.

Rae, C. F.

Reid, D. T.

Reid, T. D.

Schilling, B. W.

Sibbett, W.

Templeton, G. C.

Terry, J. A. C.

Tillman, K. A.

Treacy, E. B.

E. B. Treacy, J. Appl. Phys. 42, 3848 (1971).
[CrossRef]

Trussell, C. W.

Willard, B. C.

Yang, S. T.

Zayhowski, J. J.

Appl. Opt. (3)

J. Appl. Phys. (1)

E. B. Treacy, J. Appl. Phys. 42, 3848 (1971).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (5)

Phys. Rev. A (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).

Proc. SPIE (1)

I. Baker, S. Duncan, and J. Copley, Proc. SPIE 5406, 133 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental configuration of the OPO.

Fig. 2
Fig. 2

Slope efficiency for the signal (solid line) and idler (dashed line) outputs from the unchirped (circles) and most chirped (triangles) gratings at 146 ° C .

Fig. 3
Fig. 3

(a) Variation of the signal spectral bandwidth with crystal chirp shown with a quadratic fit to the data (solid curve), implying a direct and continuous variation of signal bandwidth with grating chirp. (b) Signal spectra measured using the unchirped grating (G1, solid curve) and the most chirped grating (G6, dashed curve) at 90 ° C .

Fig. 4
Fig. 4

Sonograms showing the temporal distribution of wavelengths contained in the signal pulses generated by the ns-pumped OPO from chirped and unchirped gratings using two opposing crystal orientations. The signal pulse chirp is represented by a dashed line showing the first-order moment of each of the fast oscilloscope measurements that comprise one sonogram, so indicating the local arrival time of each frequency component of the pulse. (a) and (b) Data from the chirped grating (G6) in directions 1 and 2, respectively (see text); (c) and (d) data from the unchirped grating (G1) with the same corresponding crystal orientations. In all cases the trace marginals are shown by the axes and indicate the temporal and spectral pulse intensities.

Metrics