Abstract

Our theoretical modelings and experimental observations illustrate that the equilibrium-state luminescence of electron-trapping materials (ETMs) can be controlled to produce either excitatory or inhibitory responses to the same optical stimulus. Because of this property, ETMs have a unique potential in optical realization of neurobiologically based parallel computations. As a classic example, we have controlled the equilibrium-state luminescence of a thin film of this stimulable storage phosphor to make it behave similarly to the receptive fields of sensory neurons in the mammalian visual system, which are responsible for early visual processing.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh, Computational Maps in the Visual Cortex (Springer, 2005).
  2. M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, 2001).
  3. R. W. Rodieck and J. Stone, J. Neurophysiol. 28, 833 (1965).
  4. C. A. Mead and M. A. Mahowald, Neural Networks 1, 91 (1988).
    [CrossRef]
  5. D. Armitage and J. I. Thackara, Appl. Opt. 28, 219 (1989).
    [CrossRef] [PubMed]
  6. H. Takei, A. Lewis, Z. Chen, and L. Nebenzahl, Appl. Opt. 30, 500 (1991).
    [CrossRef] [PubMed]
  7. V. Gruev and R. Etienne-Commings, IEEE Trans. Circuits Syst., II: Analog Digital Signal Process. 49, 233 (2002).
    [CrossRef]
  8. S. Jutamulia, G. M. Storti, J. Lindmayer, and W. Seiderman, Appl. Opt. 30, 2879 (1991).
    [CrossRef] [PubMed]
  9. S. Jutamuli, G. Stori, J. Lindmayer, and W. Seiderman, Appl. Opt. 32, 743 (1993).
    [CrossRef]
  10. Z. Wen, A. Baek, and N. Farhat, Opt. Lett. 20, 614 (1995).
    [CrossRef] [PubMed]
  11. Z. Wen and N. Farhat, Appl. Opt. 34, 5188 (1995).
    [CrossRef] [PubMed]
  12. R. Pashaie and N. Farhat, "Dynamics of electron-trapping materials under blue light and near-infrared exposure: a new model," submitted to JOSA B.
  13. The ETM sample for this research was furnished by Quantex Inc., Rockville, Maryland.

2002

V. Gruev and R. Etienne-Commings, IEEE Trans. Circuits Syst., II: Analog Digital Signal Process. 49, 233 (2002).
[CrossRef]

1995

1993

1991

1989

1988

C. A. Mead and M. A. Mahowald, Neural Networks 1, 91 (1988).
[CrossRef]

1965

R. W. Rodieck and J. Stone, J. Neurophysiol. 28, 833 (1965).

Armitage, D.

Baek, A.

Bear, M. F.

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, 2001).

Bednar, J. A.

R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh, Computational Maps in the Visual Cortex (Springer, 2005).

Chen, Z.

Choe, Y.

R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh, Computational Maps in the Visual Cortex (Springer, 2005).

Connors, B. W.

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, 2001).

Etienne-Commings, R.

V. Gruev and R. Etienne-Commings, IEEE Trans. Circuits Syst., II: Analog Digital Signal Process. 49, 233 (2002).
[CrossRef]

Farhat, N.

Z. Wen, A. Baek, and N. Farhat, Opt. Lett. 20, 614 (1995).
[CrossRef] [PubMed]

Z. Wen and N. Farhat, Appl. Opt. 34, 5188 (1995).
[CrossRef] [PubMed]

R. Pashaie and N. Farhat, "Dynamics of electron-trapping materials under blue light and near-infrared exposure: a new model," submitted to JOSA B.

Gruev, V.

V. Gruev and R. Etienne-Commings, IEEE Trans. Circuits Syst., II: Analog Digital Signal Process. 49, 233 (2002).
[CrossRef]

Jutamuli, S.

Jutamulia, S.

Lewis, A.

Lindmayer, J.

Mahowald, M. A.

C. A. Mead and M. A. Mahowald, Neural Networks 1, 91 (1988).
[CrossRef]

Mead, C. A.

C. A. Mead and M. A. Mahowald, Neural Networks 1, 91 (1988).
[CrossRef]

Miikkulainen, R.

R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh, Computational Maps in the Visual Cortex (Springer, 2005).

Nebenzahl, L.

Paradiso, M. A.

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, 2001).

Pashaie, R.

R. Pashaie and N. Farhat, "Dynamics of electron-trapping materials under blue light and near-infrared exposure: a new model," submitted to JOSA B.

Rodieck, R. W.

R. W. Rodieck and J. Stone, J. Neurophysiol. 28, 833 (1965).

Seiderman, W.

Sirosh, J.

R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh, Computational Maps in the Visual Cortex (Springer, 2005).

Stone, J.

R. W. Rodieck and J. Stone, J. Neurophysiol. 28, 833 (1965).

Stori, G.

Storti, G. M.

Takei, H.

Thackara, J. I.

Wen, Z.

Appl. Opt.

IEEE Trans. Circuits Syst., II: Analog Digital Signal Process.

V. Gruev and R. Etienne-Commings, IEEE Trans. Circuits Syst., II: Analog Digital Signal Process. 49, 233 (2002).
[CrossRef]

J. Neurophysiol.

R. W. Rodieck and J. Stone, J. Neurophysiol. 28, 833 (1965).

Neural Networks

C. A. Mead and M. A. Mahowald, Neural Networks 1, 91 (1988).
[CrossRef]

Opt. Lett.

Other

R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh, Computational Maps in the Visual Cortex (Springer, 2005).

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, 2001).

R. Pashaie and N. Farhat, "Dynamics of electron-trapping materials under blue light and near-infrared exposure: a new model," submitted to JOSA B.

The ETM sample for this research was furnished by Quantex Inc., Rockville, Maryland.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Static and spatial–temporal RFs of biological neurons: (a) ON cell in retina and LGN, (b) OFF cell in retina and LGN, (c) orientation-selective RF in primary visual cortex sensitive to 45° edge with dark in the upper left and light in the lower right, (d) orientation-selective RF in primary visual cortex sensitive to 135° edge sensitive to a white line on a dark background, (e) spatial–temporal RFs at Time-1–Time-4 [1].

Fig. 2
Fig. 2

Atomic band structure of ETM.

Fig. 3
Fig. 3

Equilibrium-state plane of ETM.

Fig. 4
Fig. 4

Schematic of the optical setup: B.S., beam splitter; S.F., spatial filter, O.F., optical filter. Other abbreviations defined in text.

Fig. 5
Fig. 5

Experimental results. When external stimulus is applied to the ON (OFF) region, the level of orange luminescence changes from S to P (R). Along SQ, stimulus is applied to the ON region, and (B1, NIR1) are coupled so as to be less sensitive to external excitation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

4 ξ η I B sinh 2 ( n s n 2 ξ I B ) = 4 ξ η I NIR sinh 2 ( n 2 ξ I NIR ) ,
I O = α n ( t ) I B + β n ( t ) I NIR .

Metrics