Abstract

We demonstrate that within a restricted optical pulse duration–pulse energy parameter space tightly focused femtosecond laser radiation can be used to fabricate porous capillaries in bulk fused silica glass by simply moving the laser focus through the material. We show that the rate of penetration of liquids into the porous capillaries can be controlled by the laser polarization, which determines their morphology. The fluid propagation is measured using the form birefringence of nanocrack/nanovoid structures produced inside the capillaries. We also demonstrate the nanofiltration capabilities of the capillaries by separating the relatively small molecules of Rhodamine 6G dye from their solvent.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Han, in Introduction to Nanoscale Science and Technology, M.Di-Ventra, S.Evoy, and J.R.Heflin, eds. (Kluwer, 2004), pp. 575-597.
    [CrossRef]
  2. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, Opt. Lett. 26, 1912 (2001).
    [CrossRef]
  3. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, Opt. Lett. 26, 277 (2001).
    [CrossRef]
  4. R. An, Y. Li, Y. Dou, D. Liu, H. Yang, and Q. Gong, Appl. Phys. A 83, 27 (2006).
    [CrossRef]
  5. H. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
    [CrossRef] [PubMed]
  6. A. A Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Proc. SPIE 5339, 194 (2004).
    [CrossRef]
  7. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, Phys. Rev. Lett. 91, 247405 (2003).
    [CrossRef] [PubMed]
  8. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).
    [CrossRef] [PubMed]
  9. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Appl. Phys. Lett. 87, 014104 (2005).
    [CrossRef]
  10. M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).
  11. A. A. Lutich, M. B. Danailov, S. Volchek, V. A. Yakovtseva, V. A. Sokol, and S. V. Gaponenko, Appl. Phys. B 84, 327 (2006).
    [CrossRef]
  12. J. Schoelkopf, P. A. Gane, C. J. Ridgway, and G. P. Matthews, Colloids Surf. A 206, 445 (2002).
    [CrossRef]

2006 (3)

R. An, Y. Li, Y. Dou, D. Liu, H. Yang, and Q. Gong, Appl. Phys. A 83, 27 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

A. A. Lutich, M. B. Danailov, S. Volchek, V. A. Yakovtseva, V. A. Sokol, and S. V. Gaponenko, Appl. Phys. B 84, 327 (2006).
[CrossRef]

2005 (1)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Appl. Phys. Lett. 87, 014104 (2005).
[CrossRef]

2004 (1)

A. A Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Proc. SPIE 5339, 194 (2004).
[CrossRef]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

2002 (1)

J. Schoelkopf, P. A. Gane, C. J. Ridgway, and G. P. Matthews, Colloids Surf. A 206, 445 (2002).
[CrossRef]

2001 (2)

1996 (1)

An, R.

R. An, Y. Li, Y. Dou, D. Liu, H. Yang, and Q. Gong, Appl. Phys. A 83, 27 (2006).
[CrossRef]

Bado, P.

A. A Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Proc. SPIE 5339, 194 (2004).
[CrossRef]

Bellouard, Y.

A. A Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Proc. SPIE 5339, 194 (2004).
[CrossRef]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Appl. Phys. Lett. 87, 014104 (2005).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Appl. Phys. Lett. 87, 014104 (2005).
[CrossRef]

Danailov, M. B.

A. A. Lutich, M. B. Danailov, S. Volchek, V. A. Yakovtseva, V. A. Sokol, and S. V. Gaponenko, Appl. Phys. B 84, 327 (2006).
[CrossRef]

Davis, H.

Dou, Y.

R. An, Y. Li, Y. Dou, D. Liu, H. Yang, and Q. Gong, Appl. Phys. A 83, 27 (2006).
[CrossRef]

Dugan, M.

A. A Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Proc. SPIE 5339, 194 (2004).
[CrossRef]

Gane, P. A.

J. Schoelkopf, P. A. Gane, C. J. Ridgway, and G. P. Matthews, Colloids Surf. A 206, 445 (2002).
[CrossRef]

Gaponenko, S. V.

A. A. Lutich, M. B. Danailov, S. Volchek, V. A. Yakovtseva, V. A. Sokol, and S. V. Gaponenko, Appl. Phys. B 84, 327 (2006).
[CrossRef]

Gong, Q.

R. An, Y. Li, Y. Dou, D. Liu, H. Yang, and Q. Gong, Appl. Phys. A 83, 27 (2006).
[CrossRef]

Han, J.

J. Han, in Introduction to Nanoscale Science and Technology, M.Di-Ventra, S.Evoy, and J.R.Heflin, eds. (Kluwer, 2004), pp. 575-597.
[CrossRef]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

H. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Appl. Phys. Lett. 87, 014104 (2005).
[CrossRef]

Itoh, K.

Jiang, Y.

Juodkazis, S.

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Kuroda, D.

Li, Y.

Liu, D.

R. An, Y. Li, Y. Dou, D. Liu, H. Yang, and Q. Gong, Appl. Phys. A 83, 27 (2006).
[CrossRef]

Lutich, A. A.

A. A. Lutich, M. B. Danailov, S. Volchek, V. A. Yakovtseva, V. A. Sokol, and S. V. Gaponenko, Appl. Phys. B 84, 327 (2006).
[CrossRef]

Mabesa, J. R.

A. A Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Proc. SPIE 5339, 194 (2004).
[CrossRef]

Marcinkevicius, A.

Matsuo, S.

Matthews, G. P.

J. Schoelkopf, P. A. Gane, C. J. Ridgway, and G. P. Matthews, Colloids Surf. A 206, 445 (2002).
[CrossRef]

Misawa, H.

Miura, K.

Miwa, M.

Nishii, J.

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Appl. Phys. Lett. 87, 014104 (2005).
[CrossRef]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Appl. Phys. Lett. 87, 014104 (2005).
[CrossRef]

Ridgway, C. J.

J. Schoelkopf, P. A. Gane, C. J. Ridgway, and G. P. Matthews, Colloids Surf. A 206, 445 (2002).
[CrossRef]

Said, A. A

A. A Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Proc. SPIE 5339, 194 (2004).
[CrossRef]

Schoelkopf, J.

J. Schoelkopf, P. A. Gane, C. J. Ridgway, and G. P. Matthews, Colloids Surf. A 206, 445 (2002).
[CrossRef]

Scott, A.

A. A Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Proc. SPIE 5339, 194 (2004).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Appl. Phys. Lett. 87, 014104 (2005).
[CrossRef]

Sokol, V. A.

A. A. Lutich, M. B. Danailov, S. Volchek, V. A. Yakovtseva, V. A. Sokol, and S. V. Gaponenko, Appl. Phys. B 84, 327 (2006).
[CrossRef]

Sugimoto, N.

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Appl. Phys. Lett. 87, 014104 (2005).
[CrossRef]

Volchek, S.

A. A. Lutich, M. B. Danailov, S. Volchek, V. A. Yakovtseva, V. A. Sokol, and S. V. Gaponenko, Appl. Phys. B 84, 327 (2006).
[CrossRef]

Watanabe, M.

Watanabe, W.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).

Yakovtseva, V. A.

A. A. Lutich, M. B. Danailov, S. Volchek, V. A. Yakovtseva, V. A. Sokol, and S. V. Gaponenko, Appl. Phys. B 84, 327 (2006).
[CrossRef]

Yamada, K.

Yang, H.

R. An, Y. Li, Y. Dou, D. Liu, H. Yang, and Q. Gong, Appl. Phys. A 83, 27 (2006).
[CrossRef]

Appl. Phys. A (1)

R. An, Y. Li, Y. Dou, D. Liu, H. Yang, and Q. Gong, Appl. Phys. A 83, 27 (2006).
[CrossRef]

Appl. Phys. B (1)

A. A. Lutich, M. B. Danailov, S. Volchek, V. A. Yakovtseva, V. A. Sokol, and S. V. Gaponenko, Appl. Phys. B 84, 327 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Appl. Phys. Lett. 87, 014104 (2005).
[CrossRef]

Colloids Surf. A (1)

J. Schoelkopf, P. A. Gane, C. J. Ridgway, and G. P. Matthews, Colloids Surf. A 206, 445 (2002).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. A Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Proc. SPIE 5339, 194 (2004).
[CrossRef]

Other (2)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).

J. Han, in Introduction to Nanoscale Science and Technology, M.Di-Ventra, S.Evoy, and J.R.Heflin, eds. (Kluwer, 2004), pp. 575-597.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SEM images of the modification morphology of capillaries produced by (a) and (b) linearly polarized and (c) and (d) circularly polarized fs radiation. In (a) and (b) the polarization E is perpendicular to the sample translation direction S . Samples are cleaved (a) and (c), or polished and then milled using a focused ion beam (b), or polished and then etched in an aqueous solution of HF (0.5% by vol.) for 3 min to emphasize the morphology (d). E p = 1300 nJ for (a)–(c) and 1000 nJ for (d). τ p = 300 fs for (a)–(d).

Fig. 2
Fig. 2

Propagation of isopropanol inside porous capillaries fabricated with E p = 1300 nJ and τ p = 300 fs . The laser polarization is oriented perpendicular to the sample translation direction. (a) Optical image in cross-polarized light of partially filled capillaries. The left ends of capillaries 1 and 3 ( 650 μ m from the left edge of the image) were opened, whereas capillary 2 was sealed to provide a reference (i.e., no index matching). The right ends of the capillaries are terminated inside the sample, i.e., sealed. (b) Birefringence signal intensity profile along capillary 1 shown in (a). The background intensity profile is measured between capillaries 1 and 2. (c) Isopropanol propagation distance versus propagation time. The solid line is a fit to the experimental data. The error bars represent the standard deviation of the measurements performed on four capillaries.

Fig. 3
Fig. 3

Fluorescence intensity profile of R6G solution penetration into the porous capillaries described in the caption of Fig. 2. The fluorescence and background intensity profile are an average along four capillaries (the inset shows three of them). The intensity decrease at D < 30 μ m is an imaging artifact caused by the sample edge.

Metrics