Abstract

Type I infrared ultrafast laser induced fiber Bragg gratings have been shown to exhibit higher-order resonances related to the Fourier components possessed by their nonsinusoidal index change profile. Using successive higher-order phase masks, we determine the Fourier components of type I-IR gratings in both hydrogen-loaded and unloaded fiber. Knowledge of the relative dc and ac components of a fiber Bragg grating is required for tailoring its spectral response.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, J. Lightwave Technol. 22, 94 (2004).
    [CrossRef]
  2. C. W. Smelser, S. J. Mihailov, and D. Grobnic, Opt. Express 13, 5377 (2005).
    [CrossRef] [PubMed]
  3. W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, Opt. Commun. 101, 85 (1993).
    [CrossRef]
  4. G. A. Miller, C. G. Askins, and E. J. Friebele, J. Lightwave Technol. 24, 2416 (2006).
    [CrossRef]
  5. D. Grobnic, S. J. Mihailov, and C. W. Smelser, Proceedings of Bragg Grating, Photosensitivity and Poling Topical Meeting (2005), poster 43.
  6. C. W. Smelser, D. Grobnic, and S. J. Mihailov, Opt. Lett. 29, 1730 (2004).
    [CrossRef] [PubMed]
  7. C. W. Smelser, S. J. Mihailov and D. Grobnic, J. Opt. Soc. Am. B 23, 2011 (2006).
    [CrossRef]
  8. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  9. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]

2006 (2)

2005 (1)

2004 (2)

1997 (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

1993 (1)

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, Opt. Commun. 101, 85 (1993).
[CrossRef]

Askins, C. G.

Bayon, J. F.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, Opt. Commun. 101, 85 (1993).
[CrossRef]

Bernage, P.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, Opt. Commun. 101, 85 (1993).
[CrossRef]

Ding, H.

Douay, M.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, Opt. Commun. 101, 85 (1993).
[CrossRef]

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Friebele, E. J.

Georges, T.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, Opt. Commun. 101, 85 (1993).
[CrossRef]

Grobnic, D.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Lu, P.

Mihailov, S. J.

Miller, G. A.

Niay, P.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, Opt. Commun. 101, 85 (1993).
[CrossRef]

Smelser, C. W.

Unruh, J.

Walker, R. B.

Xie, W. X.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, Opt. Commun. 101, 85 (1993).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, Opt. Commun. 101, 85 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (2)

D. Grobnic, S. J. Mihailov, and C. W. Smelser, Proceedings of Bragg Grating, Photosensitivity and Poling Topical Meeting (2005), poster 43.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Measured wavelength shift curves in unloaded SMF-28 fiber for a total index change of 4.5 × 10 4 . (b) The same wavelength shift curves but in hydrogen-loaded SMF-28 fiber.

Fig. 2
Fig. 2

Comparison of the Fourier components for the pristine and hydrogen-loaded SMF-28 fiber. The magnitude of the first-order component has been set to 1.

Fig. 3
Fig. 3

(a) Grating peak profile that would result from grating growth that depends on I 5 . The Fourier spectrum is determined by finding the Fourier series that will construct this profile. A dark line indicates the level at which this profile is truncated to match the unloaded fiber Fourier coefficients. (b) Fourier spectrum that results from determining the Fourier series of the I 5 profile (black) and truncated profile above the line in (a) (gray).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( x ) = Δ n o 2 + M = 1 Δ n M cos ( 2 M π x N Λ ) .
Δ n M = 2 N Λ N Λ 2 N Λ 2 Δ n ( x ) cos ( 2 M π x N Λ ) d x = Δ n p e a k C M .
Δ λ B r a g g = λ B r a g g × Δ n o n e f f = λ B r a g g C o × Δ n p e a k n e f f .
Δ n p e a k , 1 Δ n p e a k , 2 = C 2 C 1 = Δ λ B r a g g , 1 Δ λ B r a g g , 2 .

Metrics