Abstract

We demonstrate what is believed to be the first continuous-wave dual-crystal optical parametric oscillator (D-OPO) for generation of waves with a frequency difference of some terahertz. It is based on two magnesium-doped periodically poled lithium niobate crystals pumped with near-infrared light at 1030nm. By changing the temperature difference of the crystals we achieve a difference-frequency tuning. This ranges from an initially unexpected lower threshold of 1.3THz up to higher frequencies. The linewidth of the considered signal waves is smaller than 5GHz. Smaller difference frequencies were not achievable. Our model, describing the dual-crystal parametric gain, explains the observed lower tuning limit by showing that the assumption of independent oscillation conditions in a D-OPO is not necessarily valid.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Davies, E. H. Linfield, and M. B. Johnston, Phys. Med. Biol. 47, 3679 (2002).
    [CrossRef] [PubMed]
  2. P. H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
    [CrossRef]
  3. T. Taniuchi and H. Nakanishi, J. Appl. Phys. 95, 7588 (2004).
    [CrossRef]
  4. H. Adachi, T. Taniuchi, M. Yoshimura, S. Brahadeeswaran, T. Higo, M. Takagi, Y. Mori, T. Sasaki, and H. Nakanishi, Jpn. J. Appl. Phys. 43, L1121 (2004).
    [CrossRef]
  5. H. Ito, T. Hatanaka, S. Haidar, K. Nakamura, K. Kawase, and T. Taniuchi, Ferroelectrics 253, 651 (2001).
    [CrossRef]
  6. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  7. D. E. Zelmon, D. L. Small, and D. Jundt, J. Opt. Soc. Am. B 14, 3319 (1997).
    [CrossRef]
  8. G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
    [CrossRef]

2004

T. Taniuchi and H. Nakanishi, J. Appl. Phys. 95, 7588 (2004).
[CrossRef]

H. Adachi, T. Taniuchi, M. Yoshimura, S. Brahadeeswaran, T. Higo, M. Takagi, Y. Mori, T. Sasaki, and H. Nakanishi, Jpn. J. Appl. Phys. 43, L1121 (2004).
[CrossRef]

2002

A. G. Davies, E. H. Linfield, and M. B. Johnston, Phys. Med. Biol. 47, 3679 (2002).
[CrossRef] [PubMed]

P. H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
[CrossRef]

2001

H. Ito, T. Hatanaka, S. Haidar, K. Nakamura, K. Kawase, and T. Taniuchi, Ferroelectrics 253, 651 (2001).
[CrossRef]

1997

1984

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Adachi, H.

H. Adachi, T. Taniuchi, M. Yoshimura, S. Brahadeeswaran, T. Higo, M. Takagi, Y. Mori, T. Sasaki, and H. Nakanishi, Jpn. J. Appl. Phys. 43, L1121 (2004).
[CrossRef]

Brahadeeswaran, S.

H. Adachi, T. Taniuchi, M. Yoshimura, S. Brahadeeswaran, T. Higo, M. Takagi, Y. Mori, T. Sasaki, and H. Nakanishi, Jpn. J. Appl. Phys. 43, L1121 (2004).
[CrossRef]

Davies, A. G.

A. G. Davies, E. H. Linfield, and M. B. Johnston, Phys. Med. Biol. 47, 3679 (2002).
[CrossRef] [PubMed]

Edwards, G. J.

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Haidar, S.

H. Ito, T. Hatanaka, S. Haidar, K. Nakamura, K. Kawase, and T. Taniuchi, Ferroelectrics 253, 651 (2001).
[CrossRef]

Hatanaka, T.

H. Ito, T. Hatanaka, S. Haidar, K. Nakamura, K. Kawase, and T. Taniuchi, Ferroelectrics 253, 651 (2001).
[CrossRef]

Higo, T.

H. Adachi, T. Taniuchi, M. Yoshimura, S. Brahadeeswaran, T. Higo, M. Takagi, Y. Mori, T. Sasaki, and H. Nakanishi, Jpn. J. Appl. Phys. 43, L1121 (2004).
[CrossRef]

Ito, H.

H. Ito, T. Hatanaka, S. Haidar, K. Nakamura, K. Kawase, and T. Taniuchi, Ferroelectrics 253, 651 (2001).
[CrossRef]

Johnston, M. B.

A. G. Davies, E. H. Linfield, and M. B. Johnston, Phys. Med. Biol. 47, 3679 (2002).
[CrossRef] [PubMed]

Jundt, D.

Kawase, K.

H. Ito, T. Hatanaka, S. Haidar, K. Nakamura, K. Kawase, and T. Taniuchi, Ferroelectrics 253, 651 (2001).
[CrossRef]

Lawrence, M.

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Linfield, E. H.

A. G. Davies, E. H. Linfield, and M. B. Johnston, Phys. Med. Biol. 47, 3679 (2002).
[CrossRef] [PubMed]

Mori, Y.

H. Adachi, T. Taniuchi, M. Yoshimura, S. Brahadeeswaran, T. Higo, M. Takagi, Y. Mori, T. Sasaki, and H. Nakanishi, Jpn. J. Appl. Phys. 43, L1121 (2004).
[CrossRef]

Nakamura, K.

H. Ito, T. Hatanaka, S. Haidar, K. Nakamura, K. Kawase, and T. Taniuchi, Ferroelectrics 253, 651 (2001).
[CrossRef]

Nakanishi, H.

T. Taniuchi and H. Nakanishi, J. Appl. Phys. 95, 7588 (2004).
[CrossRef]

H. Adachi, T. Taniuchi, M. Yoshimura, S. Brahadeeswaran, T. Higo, M. Takagi, Y. Mori, T. Sasaki, and H. Nakanishi, Jpn. J. Appl. Phys. 43, L1121 (2004).
[CrossRef]

Sasaki, T.

H. Adachi, T. Taniuchi, M. Yoshimura, S. Brahadeeswaran, T. Higo, M. Takagi, Y. Mori, T. Sasaki, and H. Nakanishi, Jpn. J. Appl. Phys. 43, L1121 (2004).
[CrossRef]

Siegel, P. H.

P. H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
[CrossRef]

Small, D. L.

Takagi, M.

H. Adachi, T. Taniuchi, M. Yoshimura, S. Brahadeeswaran, T. Higo, M. Takagi, Y. Mori, T. Sasaki, and H. Nakanishi, Jpn. J. Appl. Phys. 43, L1121 (2004).
[CrossRef]

Taniuchi, T.

H. Adachi, T. Taniuchi, M. Yoshimura, S. Brahadeeswaran, T. Higo, M. Takagi, Y. Mori, T. Sasaki, and H. Nakanishi, Jpn. J. Appl. Phys. 43, L1121 (2004).
[CrossRef]

T. Taniuchi and H. Nakanishi, J. Appl. Phys. 95, 7588 (2004).
[CrossRef]

H. Ito, T. Hatanaka, S. Haidar, K. Nakamura, K. Kawase, and T. Taniuchi, Ferroelectrics 253, 651 (2001).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yoshimura, M.

H. Adachi, T. Taniuchi, M. Yoshimura, S. Brahadeeswaran, T. Higo, M. Takagi, Y. Mori, T. Sasaki, and H. Nakanishi, Jpn. J. Appl. Phys. 43, L1121 (2004).
[CrossRef]

Zelmon, D. E.

Ferroelectrics

H. Ito, T. Hatanaka, S. Haidar, K. Nakamura, K. Kawase, and T. Taniuchi, Ferroelectrics 253, 651 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

P. H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
[CrossRef]

J. Appl. Phys.

T. Taniuchi and H. Nakanishi, J. Appl. Phys. 95, 7588 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

H. Adachi, T. Taniuchi, M. Yoshimura, S. Brahadeeswaran, T. Higo, M. Takagi, Y. Mori, T. Sasaki, and H. Nakanishi, Jpn. J. Appl. Phys. 43, L1121 (2004).
[CrossRef]

Opt. Quantum Electron.

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Phys. Med. Biol.

A. G. Davies, E. H. Linfield, and M. B. Johnston, Phys. Med. Biol. 47, 3679 (2002).
[CrossRef] [PubMed]

Other

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the experimental setup: l 1 , 2 and Δ k 1 , 2 are the crystal lengths and the phase mismatches; z is the propagation direction of the pump, signal, and idler fields E p , s , i ; λ s is the signal wavelength.

Fig. 2
Fig. 2

Measured spectra of a D-OPO with two PPLN crystals at T 2 = ( 55 , 65 , 75 ) ° C and T 1 = 55 ° C .

Fig. 3
Fig. 3

Wavelength of the maxima from the measured spectra versus temperature T 2 . The temperature for crystal 1 is kept constant at T 1 = 55 ° C .

Fig. 4
Fig. 4

Calculated DCG (solid lines) and the individual SCG (dashed lines) versus signal wavelength for a system of two PPLN crystals at T 1 = 55 ° C and T 2 = ( 55 , 65 , 75 ) ° C . Details are given in the text.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( d d z i Δ k 2 ) E ̃ s = i γ s E p E ̃ i * ,
( d d z + i Δ k 2 ) E ̃ i * = i γ i E p * E ̃ s ,
G ( z ) = E ̃ s ( z ) 2 E ̃ s ( 0 ) 2 1 .
G SC ( l 1 ) = Γ 2 l 1 2 sinh 2 ( g 1 l 1 ) ( g 1 l 1 ) 2 ,
E ̃ s ( l 1 + l 2 ) = exp [ i 2 ( Δ k 2 Δ k 1 ) l 1 ] ( c 2 + i Δ k 2 2 g 2 s 2 ) × ( c 1 + i Δ k 1 2 g 1 s 1 ) E s ( 0 ) exp [ i 2 ( Δ k 2 Δ k 1 ) l 1 ] i γ s g 2 s 2 E p × i γ i g 1 s 1 E p * E s ( 0 ) ,

Metrics