Abstract

Using time-lens compression in a loop configuration, we generate 516fs pulses at 3.5nJ pulse energy from a continuous-wave 1.55μm source without mode locking. Just as a spatial lens can expand or focus a beam in space, so can a time-lens broaden or compress a pulse in time. By placing a time-lens in a loop, we maximize the efficiency of bandwidth generation by using one time-lens driven at low power to emulate a stack of many lenses. Our system is compact, is all fiber, and allows large tuning of the repetition rate and continuous tuning of the pulse width and center wavelength.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Kolner and M. Nazarathy, Opt. Lett. 14, 630 (1989).
    [CrossRef] [PubMed]
  2. J. van Howe and C. Xu, J. Lightwave Technol. 24, 2649 (2006).
    [CrossRef]
  3. B. H. Kolner, Appl. Phys. Lett. 52, 1122 (1988).
    [CrossRef]
  4. A. A. Godil and D. M. Bloom, Appl. Phys. Lett. 62, 1047 (1993).
    [CrossRef]
  5. T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, IEEE J. Quantum Electron. 35, 1412 (1999).
    [CrossRef]
  6. M. Hanna, P. Lacourt, S. Poinsot, and J. M. Dudley, Opt. Express 13, 1743 (2005).
    [CrossRef] [PubMed]
  7. C. B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, Electron. Lett. 42, 1114 (2006).
    [CrossRef]
  8. J. van Howe, J. Hansryd, and C. Xu, Opt. Lett. 29, 1470 (2004).
    [CrossRef] [PubMed]
  9. Z. Jiang, D. Leaird, and A. M. Weiner, J. Lightwave Technol. 24, 2487 (2006).
    [CrossRef]

2006 (3)

2005 (1)

2004 (1)

1999 (1)

T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, IEEE J. Quantum Electron. 35, 1412 (1999).
[CrossRef]

1993 (1)

A. A. Godil and D. M. Bloom, Appl. Phys. Lett. 62, 1047 (1993).
[CrossRef]

1989 (1)

1988 (1)

B. H. Kolner, Appl. Phys. Lett. 52, 1122 (1988).
[CrossRef]

Bloom, D. M.

A. A. Godil and D. M. Bloom, Appl. Phys. Lett. 62, 1047 (1993).
[CrossRef]

Dudley, J. M.

Godil, A. A.

A. A. Godil and D. M. Bloom, Appl. Phys. Lett. 62, 1047 (1993).
[CrossRef]

Hanna, M.

Hansryd, J.

Huang, C. B.

C. B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, Electron. Lett. 42, 1114 (2006).
[CrossRef]

Jiang, Z.

C. B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, Electron. Lett. 42, 1114 (2006).
[CrossRef]

Z. Jiang, D. Leaird, and A. M. Weiner, J. Lightwave Technol. 24, 2487 (2006).
[CrossRef]

Khayim, T.

T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, IEEE J. Quantum Electron. 35, 1412 (1999).
[CrossRef]

Kim, D.

T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, IEEE J. Quantum Electron. 35, 1412 (1999).
[CrossRef]

Kobayashi, T.

T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, IEEE J. Quantum Electron. 35, 1412 (1999).
[CrossRef]

Kolner, B. H.

Lacourt, P.

Leaird, D.

Leaird, D. E.

C. B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, Electron. Lett. 42, 1114 (2006).
[CrossRef]

Nazarathy, M.

Poinsot, S.

van Howe, J.

Weiner, A. M.

Z. Jiang, D. Leaird, and A. M. Weiner, J. Lightwave Technol. 24, 2487 (2006).
[CrossRef]

C. B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, Electron. Lett. 42, 1114 (2006).
[CrossRef]

Xu, C.

Yamauchi, M.

T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, IEEE J. Quantum Electron. 35, 1412 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

B. H. Kolner, Appl. Phys. Lett. 52, 1122 (1988).
[CrossRef]

A. A. Godil and D. M. Bloom, Appl. Phys. Lett. 62, 1047 (1993).
[CrossRef]

Electron. Lett. (1)

C. B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, Electron. Lett. 42, 1114 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Khayim, M. Yamauchi, D. Kim, and T. Kobayashi, IEEE J. Quantum Electron. 35, 1412 (1999).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup consisting of a seed source before point A, a time-lens loop shown between points A and B, and an amplification and compression stage beyond point B. DFB, distributed feedback laser; MZ, Mach–Zehnder modulator; PC, pulse carver; EDFA, erbium-doped fiber amplifier; PP, pulse picker; EDWA, erbium-doped waveguide amplifier; BPF, bandpass filter; PM, phase modulator; M, mirror; G, grating.

Fig. 2
Fig. 2

Optical spectra of pulses ejected from the time-lens loop for three trips around the loop (dashed line) and nine trips (solid line). (a) Experimental traces; (b) calculated traces. All spectra are taken at a 0.2 nm resolution bandwidth.

Fig. 3
Fig. 3

Interferometric autocorrelation traces for nine trips. Insets, intensity autocorrelations. (a) Experimental trace giving a 697 fs autocorrelation width ( 516 fs deconvolved). (b) Calculated trace giving a 600 fs autocorrelation width ( 444 fs deconvolved).

Fig. 4
Fig. 4

Real-time oscilloscope trace of pulse trains ejected from the loop for three trips (dashed line) and nine trips (solid line). Inset, enlargement of one of the pulses for nine round trips obtained by using a large-bandwidth sampling oscilloscope. The impulse response of the optical channels for the real-time and sampling oscilloscopes are 1.0 ns and 17 ps , respectively.

Fig. 5
Fig. 5

Fraction of remaining bandwidth for fine frequency adjustment away from resonance. Squares, tolerance for three trips; triangles, tolerance for nine trips. Dashed curves are drawn to aide the eye.

Metrics