Abstract

The phase of the amplitude-modulated radiation reflected by a Lambertian target immersed in water was measured by using a linearly and circularly polarized sounding laser beam. Different values of the water extinction coefficient in the range of 0.06–2m−1 were realized by adding skim milk as a scattering element. It is shown that very efficient rejection of optical noise, resulting in reliable phase measurements, is accomplished with a cross-polarized and copolarized detection scheme for linear and circular polarization, respectively. The experiment demonstrates that phase measurements are very sensitive to optical noise suppression and that, as far as single scattering is the main involved mechanism, significant improvements can be achieved by adopting a polarization control on both the transmitter and the receiver stages of the apparatus.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription