Abstract

A novel Fourier transform spectral interferometric (FTSI) multiplex coherent anti-Stokes Raman scattering (CARS) technique is developed to extract the vibrational spectrum equivalent to the spontaneous Raman scattering. The conventional FTSI method is modified to use the internal nonresonant CARS signal as a local oscillator to perform spectral interferometry. Utilizing the causality of the coherent vibration (i.e., there should be no signal before the laser excitation), this new FTSI method recovers the entire complex vibrational spectral parameters. We demonstrate this technique with a previously reported single-pulse multiplex CARS method that uses a single phase-controlled broadband ultrafast laser pulse.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
    [CrossRef]
  2. C. L. Evans, E. O. Potma, M. Puoris'hagg, D. Cote, C. P. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. USA 102, 16807 (2005).
    [CrossRef] [PubMed]
  3. S.-H. Lim, A. G. Caster, and S. R. Leone, J. Phys. Chem. B 110, 5196 (2006).
    [CrossRef] [PubMed]
  4. D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
    [CrossRef] [PubMed]
  5. M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
    [CrossRef]
  6. C. L. Evans, E. O. Potma, and X. S. Xie, Opt. Lett. 29, 2923 (2004).
    [CrossRef]
  7. S.-H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, 041803(R) (2005).
    [CrossRef]
  8. D. L. Marks and S. A. Boppart, Phys. Rev. Lett. 92, 123905 (2004).
    [CrossRef] [PubMed]
  9. E. O. Potma, C. L. Evans, and X. S. Xie, Opt. Lett. 31, 241 (2006).
    [CrossRef] [PubMed]
  10. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
    [CrossRef]
  11. L. Lepetit, G. Cheriaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  12. G. W. Jones, D. L. Marks, C. Vinegoni, and S. A. Boppart, Opt. Lett. 31, 1543 (2006).
    [CrossRef] [PubMed]
  13. D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 89, 273001 (2002).
    [CrossRef]
  14. G. B. Arfken, Mathematical Methods for Physicists, 5th ed. (Academic, 2001).
  15. F. R. Dollish, W. G. Fateley, and F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds (Wiley, 1974).

2006 (3)

2005 (2)

C. L. Evans, E. O. Potma, M. Puoris'hagg, D. Cote, C. P. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. USA 102, 16807 (2005).
[CrossRef] [PubMed]

S.-H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, 041803(R) (2005).
[CrossRef]

2004 (3)

D. L. Marks and S. A. Boppart, Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

C. L. Evans, E. O. Potma, and X. S. Xie, Opt. Lett. 29, 2923 (2004).
[CrossRef]

2003 (1)

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

2002 (3)

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

1995 (1)

Arfken, G. B.

G. B. Arfken, Mathematical Methods for Physicists, 5th ed. (Academic, 2001).

Bentley, F. F.

F. R. Dollish, W. G. Fateley, and F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds (Wiley, 1974).

Book, L. D.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

Boppart, S. A.

Caster, A. G.

S.-H. Lim, A. G. Caster, and S. R. Leone, J. Phys. Chem. B 110, 5196 (2006).
[CrossRef] [PubMed]

S.-H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, 041803(R) (2005).
[CrossRef]

Cheng, J. X.

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

Cheriaux, G.

Cote, D.

C. L. Evans, E. O. Potma, M. Puoris'hagg, D. Cote, C. P. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. USA 102, 16807 (2005).
[CrossRef] [PubMed]

Dollish, F. R.

F. R. Dollish, W. G. Fateley, and F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds (Wiley, 1974).

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

Evans, C. L.

Fateley, W. G.

F. R. Dollish, W. G. Fateley, and F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds (Wiley, 1974).

Joffre, M.

Jones, G. W.

Leone, S. R.

S.-H. Lim, A. G. Caster, and S. R. Leone, J. Phys. Chem. B 110, 5196 (2006).
[CrossRef] [PubMed]

S.-H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, 041803(R) (2005).
[CrossRef]

Lepetit, L.

Lim, S.-H.

S.-H. Lim, A. G. Caster, and S. R. Leone, J. Phys. Chem. B 110, 5196 (2006).
[CrossRef] [PubMed]

S.-H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, 041803(R) (2005).
[CrossRef]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris'hagg, D. Cote, C. P. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. USA 102, 16807 (2005).
[CrossRef] [PubMed]

Marks, D. L.

Muller, M.

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

Potma, E. O.

Puoris'hagg, M.

C. L. Evans, E. O. Potma, M. Puoris'hagg, D. Cote, C. P. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. USA 102, 16807 (2005).
[CrossRef] [PubMed]

Schins, J. M.

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

Silberberg, Y.

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

Vinegoni, C.

Volkmer, A.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

Xie, X. S.

E. O. Potma, C. L. Evans, and X. S. Xie, Opt. Lett. 31, 241 (2006).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris'hagg, D. Cote, C. P. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. USA 102, 16807 (2005).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

C. L. Evans, E. O. Potma, and X. S. Xie, Opt. Lett. 29, 2923 (2004).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (4)

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

S.-H. Lim, A. G. Caster, and S. R. Leone, J. Phys. Chem. B 110, 5196 (2006).
[CrossRef] [PubMed]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

S.-H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, 041803(R) (2005).
[CrossRef]

Phys. Rev. Lett. (3)

D. L. Marks and S. A. Boppart, Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

C. L. Evans, E. O. Potma, M. Puoris'hagg, D. Cote, C. P. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. USA 102, 16807 (2005).
[CrossRef] [PubMed]

Other (2)

G. B. Arfken, Mathematical Methods for Physicists, 5th ed. (Academic, 2001).

F. R. Dollish, W. G. Fateley, and F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds (Wiley, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Simulated vibrational spectrum of toluene.[3] (b) Amplitudes of the FT of Re [ P R ( ω ) ] and P R ( ω ) . (c) Experimental setup: GR, grating; SLM, spatial light modulator; SWP, short-wave pass filter; SP, spectrometer. (d) Intensity and phase of the phase-controlled laser pulse used in the experiment.

Fig. 2
Fig. 2

(a) Bottom, simulation of the two signal spectra ( S π and S 0 ) for toluene with the probe phase π and zero.[4] Top, Normalized CARS spectrum ( S π S 0 ) . (b) Top, FT of the normalized signal ( S π S 0 ) . Bottom, zero-filled (before the time zero) time profile to recover the entire complex quantity of P R ( t ) . (c) Imaginary part of the inverse Fourier transformation of the bottom trace in (b). (d) Experimental FTSI-CARS spectrum from toluene.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S ( ω ) = P R ( ω ) + P NR ( ω ) 2 = P R ( ω ) 2 + P NR ( ω ) 2 + 2 P NR ( ω ) Re [ P R ( ω ) ] ,
θ ( t ) FT ( Re [ P R ( ω ) ] ) = FT ( P R ( ω ) ) 2 = P R ( t ) 2 ,
IFT ( θ ( t ) FT ( Re [ P R ( ω ) ] ) ) = IFT ( P R ( t ) ) 2 = 1 2 π d t e i ω t P R ( t ) 2 = P R ( ω ) 2 .
S π ( ω ) S 0 ( ω ) P NR π ( ω ) P NR 0 ( ω ) 2 + 2 P NR π ( ω ) P NR 0 ( ω ) 2 Re [ P R ( ω ) ] ,

Metrics