Abstract

We present here the results of a numerical study on light scattering from nonspherical particles with relevance to detecting precancerous states in epithelial tissues. In previous studies of epithelial cell nuclei, the experimental light scattering data have been analyzed by comparison with Mie theory. However, given the spheroidal shape of many cell nuclei, the validity of this assumption demands a thorough investigation. We investigate this assumption by using the T-matrix method to model light scattered from spheroids with parameters relevant to epithelial cell nuclei. In our previous studies, we have developed a data analysis procedure that extracts the oscillatory component of the angular-scattering distribution for an ensemble of epithelial cell nuclei for comparison with Mie theory. We demonstrate that application of our analysis procedure to the predictions of the T-matrix method for spheroids, oriented such that their axis of symmetry is aligned with the incident light propagation direction, generally yields the spheroid dimension that is transverse to the incident light propagation direction with subwavelength accuracy.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription