Abstract

In standard optical fibers with constant chromatic dispersion, modulational instability (MI) sidebands execute undesirable frequency shifts due to fiber losses. By means of a technique based on average-dispersion-decreasing dispersion-managed fibers, we achieve both complete suppression of the sideband frequency shifts and fine control of the MI frequencies, without any compromise in the MI power gain.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  2. A. Hasegawa and W. F. Brinkman, IEEE J. Quantum Electron. 16, 694 (1980).
    [CrossRef]
  3. E. J. Grier, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, Electron. Lett. 25, 1246 (1989).
    [CrossRef]
  4. F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, Opt. Lett. 18, 1499 (1993).
    [CrossRef] [PubMed]
  5. M. Karlsson, J. Opt. Soc. Am. B 12, 2071 (1995).
  6. N. J. Smith and N. J. Doran, Opt. Lett. 21, 570 (1996).
    [CrossRef] [PubMed]
  7. K. Tajima, Opt. Lett. 12, 54 (1987).
    [CrossRef] [PubMed]
  8. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, Opt. Lett. 18, 476 (1993).
    [CrossRef] [PubMed]
  9. J. D. Moores, Opt. Lett. 21, 555 (1996).
    [CrossRef] [PubMed]
  10. A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, IEEE Photon. Technol. Lett. 14, 1041 (2002).
    [CrossRef]

2002 (1)

A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, IEEE Photon. Technol. Lett. 14, 1041 (2002).
[CrossRef]

1996 (2)

1995 (1)

1993 (2)

1989 (1)

E. J. Grier, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, Electron. Lett. 25, 1246 (1989).
[CrossRef]

1987 (1)

1980 (1)

A. Hasegawa and W. F. Brinkman, IEEE J. Quantum Electron. 16, 694 (1980).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Brinkman, W. F.

A. Hasegawa and W. F. Brinkman, IEEE J. Quantum Electron. 16, 694 (1980).
[CrossRef]

Chernikov, S. V.

Dianov, E. M.

Doran, N. J.

Grier, E. J.

E. J. Grier, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, Electron. Lett. 25, 1246 (1989).
[CrossRef]

Hasegawa, A.

A. Hasegawa and W. F. Brinkman, IEEE J. Quantum Electron. 16, 694 (1980).
[CrossRef]

Karlsson, M.

Matera, F.

Mecozzi, A.

Moores, J. D.

Moubissi, A. B.

A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, IEEE Photon. Technol. Lett. 14, 1041 (2002).
[CrossRef]

Nakkeeran, K.

A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, IEEE Photon. Technol. Lett. 14, 1041 (2002).
[CrossRef]

Patrick, D. M.

E. J. Grier, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, Electron. Lett. 25, 1246 (1989).
[CrossRef]

Payne, D. N.

Richardson, D. J.

Romagnoli, M.

Settembre, M.

Smith, N. J.

Tajima, K.

Taylor, J. R.

E. J. Grier, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, Electron. Lett. 25, 1246 (1989).
[CrossRef]

Tchofo Dinda, P.

A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, IEEE Photon. Technol. Lett. 14, 1041 (2002).
[CrossRef]

Wabnitz, S.

A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, IEEE Photon. Technol. Lett. 14, 1041 (2002).
[CrossRef]

Wigley, P. G. J.

E. J. Grier, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, Electron. Lett. 25, 1246 (1989).
[CrossRef]

Electron. Lett. (1)

E. J. Grier, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, Electron. Lett. 25, 1246 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Hasegawa and W. F. Brinkman, IEEE J. Quantum Electron. 16, 694 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. B. Moubissi, K. Nakkeeran, P. Tchofo Dinda, and S. Wabnitz, IEEE Photon. Technol. Lett. 14, 1041 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Dispersion profile of the A3DMF system. (b) Accumulated MI gain spectrum for L = 33.5 km .

Fig. 2
Fig. 2

(a) OMF versus system length L. (b) Accumulated gain versus system length L. Dotted curve [Eq. (1)]. (c), (d) Results of the numerical simulations of the nonlinear Schrödinger equation (2).

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Ω IF = 2 γ P β , G IF = β Ω 4 γ P β Ω 2 ,
q z + ( i 2 ) [ β av + β ̃ ( z ) ] q t t i γ q 2 q = ( α 2 ) q ,
Q z + i sgn ( β av ) Q t t 2 i γ Q 2 Q = [ i β ̃ Q t t + ( α + β av Z ) Q ] ( 2 β av ) .
β ( z ) = β av = β av ( 0 ) exp ( α z ) .
L 1 = ( β + β av 1 ) Z d Δ β , Δ β = β + β ,
L n = Z d [ β + β av 1 exp ( j = 1 n 1 A j ) ] Δ β ,
L n + = Z d L n , n = 2 , , N ,
u z + i [ β av + β ̃ ( z ) ] u t t 2 i γ f ( z ) u 2 u = 0 ,
z [ b ( Ω , z ) b * ( Ω , z ) ] = i f ( z ) M [ b ( Ω , z ) b * ( Ω , z ) ] ,
G ( Ω , z ) = 2 I ( K ) = f ( z ) g ( Ω , 0 ) ,
Ω opt = 2 γ P 0 β av 1 .
G T = 0 L G ( Ω opt , z ) d z α L = G ( Ω opt , 0 ) L eff α L ,
L opt = ( 1 α ) log [ G ( Ω opt , 0 ) α ] .
g ̂ ( Ω , z ) = β ̂ Ω 4 γ f ( z ) P 0 β ̂ Ω 2 .
G ̂ ( Ω , L ) α L + 0 L g ̂ ( z , Ω ) d z = α L + 2 β ̂ Ω 2 α [ η 1 atan ( η 1 η 2 ) ] , L < Z c ,
G ̂ ( Ω , L ) = α L + ( 2 β ̂ Ω 2 α ) { W ( Ω , 0 ) atan [ W ( Ω , 0 ) ] } , L Z c ,
Ω opt = 0.168 Ω c α L + Ω c 2 , L < Z c ,
Ω opt = 0.394 Ω c , L Z c ,

Metrics