Abstract

We demonstrate electrically pumped large-area edge-emitting InGaAsPInP two-dimensional photonic crystal lasers with angled facets at room temperature. The laser uses a weak index perturbation surface photonic crystal structure to control optical modes in the wafer plane. Measurements of the laser spectra show that the modal selection is due to satisfying the Bragg resonance conditions in both the longitudinal and the transverse directions. The lasing wavelength is tuned lithographically by changing photonic crystal lattice constants. We demonstrate a fine lasing wavelength tuning sensitivity (change of lasing wavelength over change of lattice constant) of 0.08 through the transverse lattice constant tuning.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  2. L. Zhu, P. Chak, J. K. S. Poon, G. A. DeRose, A. Yariv, and A. Scherer (submitted to Opt. Express).
  3. R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch, IEEE J. Quantum Electron. 34, 2196 (1998).
    [CrossRef]
  4. A. M. Sarangan, M. W. Wright, J. Marciante, and D. J. Bossert, IEEE J. Quantum Electron. 35, 1220 (1999).
    [CrossRef]
  5. I. Vurgaftman and J. R. Meyer, IEEE J. Quantum Electron. 38, 592 (2002).
    [CrossRef]
  6. A. Yariv, Opt. Lett. 27, 936 (2002).
    [CrossRef]
  7. L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv, and A. Scherer, Opt. Lett. 31, 1863 (2006).
    [CrossRef] [PubMed]
  8. C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, IEEE Photon. Technol. Lett. 16, 1250 (2004).
    [CrossRef]
  9. M. Nakamura, H. W. Yen, A. Yariv, E. Garmire, S. Somekh, and H. L. Garvin, Appl. Phys. Lett. 23, 224 (1973).
    [CrossRef]
  10. O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, IEEE Photon. Technol. Lett. 12, 1126 (2000).
    [CrossRef]
  11. L. Zhu, A. Yariv, and A. Scherer (submitted to IEEE J. Quantum Electron).
  12. K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).
    [CrossRef]

2006

2004

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, IEEE Photon. Technol. Lett. 16, 1250 (2004).
[CrossRef]

2003

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).
[CrossRef]

2002

I. Vurgaftman and J. R. Meyer, IEEE J. Quantum Electron. 38, 592 (2002).
[CrossRef]

A. Yariv, Opt. Lett. 27, 936 (2002).
[CrossRef]

2000

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, IEEE Photon. Technol. Lett. 12, 1126 (2000).
[CrossRef]

1999

A. M. Sarangan, M. W. Wright, J. Marciante, and D. J. Bossert, IEEE J. Quantum Electron. 35, 1220 (1999).
[CrossRef]

1998

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch, IEEE J. Quantum Electron. 34, 2196 (1998).
[CrossRef]

1997

1973

M. Nakamura, H. W. Yen, A. Yariv, E. Garmire, S. Somekh, and H. L. Garvin, Appl. Phys. Lett. 23, 224 (1973).
[CrossRef]

Bewley, W. W.

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, IEEE Photon. Technol. Lett. 16, 1250 (2004).
[CrossRef]

Birks, T. A.

Bogatov, A.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).
[CrossRef]

Bossert, D. J.

A. M. Sarangan, M. W. Wright, J. Marciante, and D. J. Bossert, IEEE J. Quantum Electron. 35, 1220 (1999).
[CrossRef]

Bugge, F.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).
[CrossRef]

Canedy, C. L.

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, IEEE Photon. Technol. Lett. 16, 1250 (2004).
[CrossRef]

Chak, P.

L. Zhu, P. Chak, J. K. S. Poon, G. A. DeRose, A. Yariv, and A. Scherer (submitted to Opt. Express).

Choi, J. M.

Dapkus, P. D.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, IEEE Photon. Technol. Lett. 12, 1126 (2000).
[CrossRef]

Demars, S.

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch, IEEE J. Quantum Electron. 34, 2196 (1998).
[CrossRef]

DeRose, G. A.

L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv, and A. Scherer, Opt. Lett. 31, 1863 (2006).
[CrossRef] [PubMed]

L. Zhu, P. Chak, J. K. S. Poon, G. A. DeRose, A. Yariv, and A. Scherer (submitted to Opt. Express).

Drakin, A. E.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).
[CrossRef]

Erbert, G.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).
[CrossRef]

Fricke, J.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).
[CrossRef]

Garmire, E.

M. Nakamura, H. W. Yen, A. Yariv, E. Garmire, S. Somekh, and H. L. Garvin, Appl. Phys. Lett. 23, 224 (1973).
[CrossRef]

Garvin, H. L.

M. Nakamura, H. W. Yen, A. Yariv, E. Garmire, S. Somekh, and H. L. Garvin, Appl. Phys. Lett. 23, 224 (1973).
[CrossRef]

Güther, R.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).
[CrossRef]

Hardy, A.

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch, IEEE J. Quantum Electron. 34, 2196 (1998).
[CrossRef]

Husain, A.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, IEEE Photon. Technol. Lett. 12, 1126 (2000).
[CrossRef]

Kim, C. S.

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, IEEE Photon. Technol. Lett. 16, 1250 (2004).
[CrossRef]

Kim, I.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, IEEE Photon. Technol. Lett. 12, 1126 (2000).
[CrossRef]

Kim, M.

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, IEEE Photon. Technol. Lett. 16, 1250 (2004).
[CrossRef]

Knight, J. C.

Lang, R. J.

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch, IEEE J. Quantum Electron. 34, 2196 (1998).
[CrossRef]

Lee, P. T.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, IEEE Photon. Technol. Lett. 12, 1126 (2000).
[CrossRef]

Marciante, J.

A. M. Sarangan, M. W. Wright, J. Marciante, and D. J. Bossert, IEEE J. Quantum Electron. 35, 1220 (1999).
[CrossRef]

Meyer, J. R.

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, IEEE Photon. Technol. Lett. 16, 1250 (2004).
[CrossRef]

I. Vurgaftman and J. R. Meyer, IEEE J. Quantum Electron. 38, 592 (2002).
[CrossRef]

Nakamura, M.

M. Nakamura, H. W. Yen, A. Yariv, E. Garmire, S. Somekh, and H. L. Garvin, Appl. Phys. Lett. 23, 224 (1973).
[CrossRef]

O'Brien, J. D.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, IEEE Photon. Technol. Lett. 12, 1126 (2000).
[CrossRef]

Painter, O.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, IEEE Photon. Technol. Lett. 12, 1126 (2000).
[CrossRef]

Paschke, K.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).
[CrossRef]

Poon, J. K. S.

L. Zhu, P. Chak, J. K. S. Poon, G. A. DeRose, A. Yariv, and A. Scherer (submitted to Opt. Express).

Russell, P. St. J.

Sarangan, A. M.

A. M. Sarangan, M. W. Wright, J. Marciante, and D. J. Bossert, IEEE J. Quantum Electron. 35, 1220 (1999).
[CrossRef]

Scherer, A.

L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv, and A. Scherer, Opt. Lett. 31, 1863 (2006).
[CrossRef] [PubMed]

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, IEEE Photon. Technol. Lett. 12, 1126 (2000).
[CrossRef]

L. Zhu, A. Yariv, and A. Scherer (submitted to IEEE J. Quantum Electron).

L. Zhu, P. Chak, J. K. S. Poon, G. A. DeRose, A. Yariv, and A. Scherer (submitted to Opt. Express).

Schoenfelder, A.

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch, IEEE J. Quantum Electron. 34, 2196 (1998).
[CrossRef]

Somekh, S.

M. Nakamura, H. W. Yen, A. Yariv, E. Garmire, S. Somekh, and H. L. Garvin, Appl. Phys. Lett. 23, 224 (1973).
[CrossRef]

Stratonnikov, A. A.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).
[CrossRef]

Tränkle, G.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).
[CrossRef]

Vurgaftman, I.

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, IEEE Photon. Technol. Lett. 16, 1250 (2004).
[CrossRef]

I. Vurgaftman and J. R. Meyer, IEEE J. Quantum Electron. 38, 592 (2002).
[CrossRef]

Welch, D.

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch, IEEE J. Quantum Electron. 34, 2196 (1998).
[CrossRef]

Wenzel, H.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).
[CrossRef]

Wright, M. W.

A. M. Sarangan, M. W. Wright, J. Marciante, and D. J. Bossert, IEEE J. Quantum Electron. 35, 1220 (1999).
[CrossRef]

Yariv, A.

L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv, and A. Scherer, Opt. Lett. 31, 1863 (2006).
[CrossRef] [PubMed]

A. Yariv, Opt. Lett. 27, 936 (2002).
[CrossRef]

M. Nakamura, H. W. Yen, A. Yariv, E. Garmire, S. Somekh, and H. L. Garvin, Appl. Phys. Lett. 23, 224 (1973).
[CrossRef]

L. Zhu, P. Chak, J. K. S. Poon, G. A. DeRose, A. Yariv, and A. Scherer (submitted to Opt. Express).

L. Zhu, A. Yariv, and A. Scherer (submitted to IEEE J. Quantum Electron).

Yen, H. W.

M. Nakamura, H. W. Yen, A. Yariv, E. Garmire, S. Somekh, and H. L. Garvin, Appl. Phys. Lett. 23, 224 (1973).
[CrossRef]

Zhu, L.

L. Zhu, J. M. Choi, G. A. DeRose, A. Yariv, and A. Scherer, Opt. Lett. 31, 1863 (2006).
[CrossRef] [PubMed]

L. Zhu, P. Chak, J. K. S. Poon, G. A. DeRose, A. Yariv, and A. Scherer (submitted to Opt. Express).

L. Zhu, A. Yariv, and A. Scherer (submitted to IEEE J. Quantum Electron).

Zurko, K. D.

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch, IEEE J. Quantum Electron. 34, 2196 (1998).
[CrossRef]

Appl. Phys. Lett.

M. Nakamura, H. W. Yen, A. Yariv, E. Garmire, S. Somekh, and H. L. Garvin, Appl. Phys. Lett. 23, 224 (1973).
[CrossRef]

IEEE J. Quantum Electron.

R. J. Lang, K. D. Zurko, A. Hardy, S. Demars, A. Schoenfelder, and D. Welch, IEEE J. Quantum Electron. 34, 2196 (1998).
[CrossRef]

A. M. Sarangan, M. W. Wright, J. Marciante, and D. J. Bossert, IEEE J. Quantum Electron. 35, 1220 (1999).
[CrossRef]

I. Vurgaftman and J. R. Meyer, IEEE J. Quantum Electron. 38, 592 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron. 9, 1172 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

C. S. Kim, W. W. Bewley, C. L. Canedy, I. Vurgaftman, M. Kim, and J. R. Meyer, IEEE Photon. Technol. Lett. 16, 1250 (2004).
[CrossRef]

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, IEEE Photon. Technol. Lett. 12, 1126 (2000).
[CrossRef]

Opt. Lett.

Other

L. Zhu, P. Chak, J. K. S. Poon, G. A. DeRose, A. Yariv, and A. Scherer (submitted to Opt. Express).

L. Zhu, A. Yariv, and A. Scherer (submitted to IEEE J. Quantum Electron).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of a two-dimensional photonic crystal laser. a is the transverse lattice constant, b is the longitudinal lattice constant, and θ tilt is the facet tilt angle. (b) SEM image of the photonic crystal laser with a cleaved facet. Each etched hole is filled with a planarization polymer. The image is taken before the deposition of electrical contacts.

Fig. 2
Fig. 2

Optical spectra for the lasers with the same transverse lattice constant but different longitudinal lattice constants at J = 1.40 kA cm 2 . Lasing is obtained for the 490 and 500 nm designs with lasing wavelengths of 1550.3 and 1575.9 nm , respectively. The resonance peak at 1523.1 nm for the 480 nm design is evident in the spectrum, although lasing is not obtained.

Fig. 3
Fig. 3

(a) Lasing spectra for the 490 nm design at different pump currents ( 1.1 × , 2.2 × , and 3.5 × threshold). Further increase of the pump current is limited by our current source. (b) Corresponding far-field profile for the 490 nm design at the 3.5 × threshold.

Fig. 4
Fig. 4

(a) Lasing spectra for the lasers with the same longitudinal lattice constant but different transverse lattice constants at the 1.5 × threshold. A small tuning sensitivity of 0.08 is obtained. (b) Comparison between the experimental and theoretical results for the lasing wavelength. n eff is also chosen to be 3.257 in the calculation. A good match is obtained, and the slight difference is mainly due to the material dispersion.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k x 2 + k z 2 = n eff 2 k 0 2 = n eff 2 ( 2 π λ ) 2 ,
λ = 2 n eff ( l 2 a 2 + j 2 b 2 ) 1 2 ,
d λ d a = 2 n eff ( l 2 a 2 + j 2 b 2 ) 3 2 ( l 2 a 3 ) ,
d λ d b = 2 n eff ( l 2 a 2 + j 2 b 2 ) 3 2 ( j 2 b 3 ) .

Metrics