Abstract

We present a highly efficient integratable waveguide transformer that is capable of converting Gaussian-like waveguide modes to much more complicated non-Gaussian-like slot-waveguide modes, and vice versa. The structure consists of several pairs of complementary tapers capable of making this mode conversion virtually lossless. The capability of extremely low-loss mode transformation between these two classes of waveguides has been demonstrated by means of single- and double-slot transformers. Our simulation has shown that the total transformation losses are less than 0.01 and 0.02dB per transformer, respectively, and can be easily achieved, with a total device length of less than 100μm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
    [CrossRef]
  2. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).
    [CrossRef]
  3. K. Wada, H. C. Luan, D. R. C. Lim, and L. C. Kimerling, Proc. SPIE 4780, 437 (2002).
    [CrossRef]
  4. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
    [CrossRef] [PubMed]
  5. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004).
    [CrossRef] [PubMed]
  6. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 29, 1626 (2004).
    [CrossRef] [PubMed]
  7. N.-N. Feng, J. Michel, and L. C. Kimerling, IEEE J. Quantum Electron. 42, 885 (2006).
    [CrossRef]
  8. T. Fujisawa and M. Koshiba, IEEE Photon. Technol. Lett. 8, 1530 (2006).
    [CrossRef]
  9. C. A. Barrios and M. Lipson, Opt. Express 13, 10092 (2005).
    [CrossRef] [PubMed]
  10. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, Opt. Express 13, 5216 (2005).
    [CrossRef] [PubMed]
  11. K. K. McLauchlan and S. T. Dunham, IEEE J. Sel. Top. Quantum Electron. 12, (2006).
  12. P. A. Anderson, B. S. Schmidt, and M. Lipson, Opt. Express 14, 9197 (2006).
    [CrossRef] [PubMed]
  13. N.-N. Feng, G.-R. Zhou, C. Xu, and W.-P. Huang, J. Lightwave Technol. 20, 1976 (2002).
    [CrossRef]
  14. Beam propagation simulator, BeamPROP software, Rsoft-Design Inc., http://www.rsoftinc.com/products/component_design/BeamPROP.
  15. "Photonic materials, devices and systems--nanostructures technology, research and applications," RLE Progress Report 2001, (Research Laboratory of Electronics at MIT, 2001), http://www.rle.mit.edu/rleonline/ProgressReports/1502_23.pdf.

2006 (4)

N.-N. Feng, J. Michel, and L. C. Kimerling, IEEE J. Quantum Electron. 42, 885 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, IEEE Photon. Technol. Lett. 8, 1530 (2006).
[CrossRef]

K. K. McLauchlan and S. T. Dunham, IEEE J. Sel. Top. Quantum Electron. 12, (2006).

P. A. Anderson, B. S. Schmidt, and M. Lipson, Opt. Express 14, 9197 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (3)

2002 (2)

N.-N. Feng, G.-R. Zhou, C. Xu, and W.-P. Huang, J. Lightwave Technol. 20, 1976 (2002).
[CrossRef]

K. Wada, H. C. Luan, D. R. C. Lim, and L. C. Kimerling, Proc. SPIE 4780, 437 (2002).
[CrossRef]

1999 (1)

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Almeida, V. R.

Anderson, P. A.

Baehr-Jones, T.

Barrios, C. A.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Dalton, L.

Dunham, S. T.

K. K. McLauchlan and S. T. Dunham, IEEE J. Sel. Top. Quantum Electron. 12, (2006).

Fan, S.

Feng, N.-N.

N.-N. Feng, J. Michel, and L. C. Kimerling, IEEE J. Quantum Electron. 42, 885 (2006).
[CrossRef]

N.-N. Feng, G.-R. Zhou, C. Xu, and W.-P. Huang, J. Lightwave Technol. 20, 1976 (2002).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Fujisawa, T.

T. Fujisawa and M. Koshiba, IEEE Photon. Technol. Lett. 8, 1530 (2006).
[CrossRef]

Haus, H. A.

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Hochberg, M.

Huang, W.-P.

Jen, A. K.-Y.

Joannopoulos, J. D.

Johnson, S. G.

Kimerling, L. C.

N.-N. Feng, J. Michel, and L. C. Kimerling, IEEE J. Quantum Electron. 42, 885 (2006).
[CrossRef]

K. Wada, H. C. Luan, D. R. C. Lim, and L. C. Kimerling, Proc. SPIE 4780, 437 (2002).
[CrossRef]

Koshiba, M.

T. Fujisawa and M. Koshiba, IEEE Photon. Technol. Lett. 8, 1530 (2006).
[CrossRef]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Lawson, R.

Liao, Y.

Lim, D. R. C.

K. Wada, H. C. Luan, D. R. C. Lim, and L. C. Kimerling, Proc. SPIE 4780, 437 (2002).
[CrossRef]

Lipson, M.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Luan, H. C.

K. Wada, H. C. Luan, D. R. C. Lim, and L. C. Kimerling, Proc. SPIE 4780, 437 (2002).
[CrossRef]

Manolatou, C.

McLauchlan, K. K.

K. K. McLauchlan and S. T. Dunham, IEEE J. Sel. Top. Quantum Electron. 12, (2006).

Michel, J.

N.-N. Feng, J. Michel, and L. C. Kimerling, IEEE J. Quantum Electron. 42, 885 (2006).
[CrossRef]

Panepucci, R. R.

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 29, 1626 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef] [PubMed]

Scherer, A.

Schmidt, B. S.

Sullivan, P. A.

Villeneuve, P. R.

Wada, K.

K. Wada, H. C. Luan, D. R. C. Lim, and L. C. Kimerling, Proc. SPIE 4780, 437 (2002).
[CrossRef]

Wang, G.

Xu, C.

Xu, Q.

Zhou, G.-R.

IEEE J. Quantum Electron. (1)

N.-N. Feng, J. Michel, and L. C. Kimerling, IEEE J. Quantum Electron. 42, 885 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. K. McLauchlan and S. T. Dunham, IEEE J. Sel. Top. Quantum Electron. 12, (2006).

IEEE Photon. Technol. Lett. (1)

T. Fujisawa and M. Koshiba, IEEE Photon. Technol. Lett. 8, 1530 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (1)

K. Wada, H. C. Luan, D. R. C. Lim, and L. C. Kimerling, Proc. SPIE 4780, 437 (2002).
[CrossRef]

Other (2)

Beam propagation simulator, BeamPROP software, Rsoft-Design Inc., http://www.rsoftinc.com/products/component_design/BeamPROP.

"Photonic materials, devices and systems--nanostructures technology, research and applications," RLE Progress Report 2001, (Research Laboratory of Electronics at MIT, 2001), http://www.rle.mit.edu/rleonline/ProgressReports/1502_23.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics of the proposed (a) single- and (b) double-slot waveguide transformers (not to scale).

Fig. 2
Fig. 2

Field evolution of a silicon waveguide to single- and double-slot waveguide transformer.

Fig. 3
Fig. 3

Taper designs for the (a) single- and (b) double-slot waveguide transformers with two different slot widths, d s , of 50 and 20 nm , respectively.

Fig. 4
Fig. 4

Wavelength dependence of the optimal double-slot waveguide transformer with two different slot widths, d s , of 20 and 50 nm . The taper lengths for the first and the second stage tapers of this transformer are 20 and 40 μ m , respectively.

Metrics