Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-contrast coherent population trapping resonances using four-wave mixing in Rb 87

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate very high-contrast coherent population trapping[1] (CPT) resonances by using four-wave mixing in Rb87 atoms. In the experiment, we take advantage of the spectral overlap between F=2F and F=3F optical resonances on the D1 line of Rb87 and Rb85 atoms, respectively, to eliminate the DC-light background from the CPT resonance signal. We observe a CPT resonance with a contrast in the range of 90%, compared with a few percent achieved by alternative methods.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Passive atomic frequency standard based on coherent population trapping in 87Rb using injection-locked lasers

Han Seb Moon, Sang Eon Park, Young-Ho Park, Lim Lee, and Jung Bog Kim
J. Opt. Soc. Am. B 23(11) 2393-2397 (2006)

Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin
Opt. Lett. 27(16) 1472-1474 (2002)

Performance of a prototype atomic clock based on lin‖lin coherent population trapping resonances in Rb atomic vapor

Eugeniy E. Mikhailov, Travis Horrom, Nathan Belcher, and Irina Novikova
J. Opt. Soc. Am. B 27(3) 417-422 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved