Abstract

This work investigates the effect of phase fluctuation averaging on phase fluctuation induced by intrachannel four-wave mixing (IFWM) in highly dispersed differential phase-shift keying transmission systems. Through repeatedly averaging the phase fluctuations of adjacent pulses, a simple analytical model and numerical simulation revealed that the IFWM-induced differential phase fluctuation is suppressed and convergent, even after an ultralong transmission. The influence of averaging the phase fluctuations on the bit error rate is also evaluated by the semianalytical method.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Xu, X. Liu, and X. Wei, IEEE J. Sel. Top. Quantum Electron. 10, 281 (2004).
    [Crossref]
  2. K. Croussore, C. Kim, and G. Li, Opt. Lett. 29, 2357 (2004).
    [Crossref] [PubMed]
  3. A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, IEEE Photon. Technol. Lett. 17, 639 (2005).
    [Crossref]
  4. M. Matsumoto, J. Lightwave Technol. 23, 2696 (2005).
    [Crossref]
  5. X. Liu, C. Xu, and X. Wei, in 28th European Conference on Optical Communication, 2002, ECOC 2002 (IEEE, 2002), paper 9.6.5.
  6. C. C. Wei and J. Chen, Opt. Express 14, 9584 (2006).
    [Crossref] [PubMed]
  7. X. Wei and X. Liu, Opt. Lett. 28, 2300 (2003).
    [Crossref] [PubMed]
  8. K.-P. Ho, IEEE Photon. Technol. Lett. 17, 789 (2005).
    [Crossref]
  9. K.-P. Ho, IEEE Photon. Technol. Lett. 16, 308 (2004).
    [Crossref]

2006 (1)

2005 (3)

M. Matsumoto, J. Lightwave Technol. 23, 2696 (2005).
[Crossref]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, IEEE Photon. Technol. Lett. 17, 639 (2005).
[Crossref]

K.-P. Ho, IEEE Photon. Technol. Lett. 17, 789 (2005).
[Crossref]

2004 (3)

K.-P. Ho, IEEE Photon. Technol. Lett. 16, 308 (2004).
[Crossref]

C. Xu, X. Liu, and X. Wei, IEEE J. Sel. Top. Quantum Electron. 10, 281 (2004).
[Crossref]

K. Croussore, C. Kim, and G. Li, Opt. Lett. 29, 2357 (2004).
[Crossref] [PubMed]

2003 (1)

Chen, J.

Croussore, K.

Cvecek, K.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, IEEE Photon. Technol. Lett. 17, 639 (2005).
[Crossref]

Ho, K.-P.

K.-P. Ho, IEEE Photon. Technol. Lett. 17, 789 (2005).
[Crossref]

K.-P. Ho, IEEE Photon. Technol. Lett. 16, 308 (2004).
[Crossref]

Kim, C.

Leuchs, G.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, IEEE Photon. Technol. Lett. 17, 639 (2005).
[Crossref]

Li, G.

Liu, X.

C. Xu, X. Liu, and X. Wei, IEEE J. Sel. Top. Quantum Electron. 10, 281 (2004).
[Crossref]

X. Wei and X. Liu, Opt. Lett. 28, 2300 (2003).
[Crossref] [PubMed]

X. Liu, C. Xu, and X. Wei, in 28th European Conference on Optical Communication, 2002, ECOC 2002 (IEEE, 2002), paper 9.6.5.

Matsumoto, M.

Meissner, M.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, IEEE Photon. Technol. Lett. 17, 639 (2005).
[Crossref]

Schmauss, B.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, IEEE Photon. Technol. Lett. 17, 639 (2005).
[Crossref]

Sponsel, K.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, IEEE Photon. Technol. Lett. 17, 639 (2005).
[Crossref]

Striegler, A. G.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, IEEE Photon. Technol. Lett. 17, 639 (2005).
[Crossref]

Wei, C. C.

Wei, X.

C. Xu, X. Liu, and X. Wei, IEEE J. Sel. Top. Quantum Electron. 10, 281 (2004).
[Crossref]

X. Wei and X. Liu, Opt. Lett. 28, 2300 (2003).
[Crossref] [PubMed]

X. Liu, C. Xu, and X. Wei, in 28th European Conference on Optical Communication, 2002, ECOC 2002 (IEEE, 2002), paper 9.6.5.

Xu, C.

C. Xu, X. Liu, and X. Wei, IEEE J. Sel. Top. Quantum Electron. 10, 281 (2004).
[Crossref]

X. Liu, C. Xu, and X. Wei, in 28th European Conference on Optical Communication, 2002, ECOC 2002 (IEEE, 2002), paper 9.6.5.

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xu, X. Liu, and X. Wei, IEEE J. Sel. Top. Quantum Electron. 10, 281 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (3)

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, IEEE Photon. Technol. Lett. 17, 639 (2005).
[Crossref]

K.-P. Ho, IEEE Photon. Technol. Lett. 17, 789 (2005).
[Crossref]

K.-P. Ho, IEEE Photon. Technol. Lett. 16, 308 (2004).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (2)

Other (1)

X. Liu, C. Xu, and X. Wei, in 28th European Conference on Optical Communication, 2002, ECOC 2002 (IEEE, 2002), paper 9.6.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Correlation coefficients of the IFWM-induced PFs. Insets, corresponding distributions of φ n and φ n 1 .

Fig. 2
Fig. 2

Variance of DPF as a function of the number of spans.

Fig. 3
Fig. 3

BER curves as functions of the SNR.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ Φ 2 = ( k C k A k ) σ 2 ,
A k = a k a k = 2 δ 0 , k + δ 1 , k + δ 1 , k + 4 [ ( 2 N + 2 N + k + 1 ) 2 2 N + 2 ( N + 2 k + 1 ) 2 N + 2 ( N + 2 k + 1 ) 2 N + 2 ]
φ n = l , m s l s m s n s l + m n [ γ 1 P 1 F l , m ( L 1 , α 1 , β 1 ) γ 2 P 2 e α 2 L 2 F l , m ( L 2 , α 2 , β 2 ) ] ,
F l , m ( L , α , β ) = R [ 0 L e α z 1 + 2 j β z τ 2 + 3 ( β z τ 2 ) 2 × exp { ( T τ ) 2 [ 3 l m 1 + 3 j β z τ 2 + ( l m ) 2 1 + 2 j β z τ 2 + 3 ( β z τ 2 ) 2 ] } d z ] ,
p e = Q 1 ( 2 ρ s sin Δ Φ 2 , 2 ρ s cos Δ Φ 2 ) e ρ s 2 × I 0 ( ρ s sin Δ Φ ) ,

Metrics