Abstract

Čerenkov radiation is generated as an unwanted background when optical fibers carrying signals pass through radiation fields. The angular dependence of the intensity of Čerenkov radiation transmitted in silica-core fibers was measured using 6 and 12MeV electron beams from a Varian Clinac accelerator. These confirmed theoretical predictions that the angular variation of Čerenkov radiation transmitted along optical fibers depends only on the refractive index difference Δn between the core and the cladding, and that the peak intensity is proportional to the cube of the fiber core radius.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. West, in Proc. SPIE 4547, 31 (2002).
    [CrossRef]
  2. W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd ed. (Addison-Wesley, 1962), p. 494.
  3. S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, Phys. Med. Biol. 38, 945 (1993).
    [CrossRef]
  4. S. L. Law, N. Suchowerska, S. C. Fleming, A. S. Beddar, and D. R. McKenzie, in Proc. SPIE 5317, 105 (2004).
    [CrossRef]
  5. A. S. Beddar, T. R. Mackie, and F. H. Attix, Phys. Med. Biol. 37, 1883 (1992).
    [CrossRef] [PubMed]
  6. M. C. Aznar, C. E. Andersen, L. Botter-Jensen, S. A. J. Back, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, Phys. Med. Biol. 49, 1655 (2004).
    [CrossRef] [PubMed]
  7. S. H. Law, S. C. Fleming, D. R. McKenzie, and N. Suchowerska, Appl. Opt. 45, 9151 (2006).
    [CrossRef] [PubMed]

2006 (1)

2004 (2)

M. C. Aznar, C. E. Andersen, L. Botter-Jensen, S. A. J. Back, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, Phys. Med. Biol. 49, 1655 (2004).
[CrossRef] [PubMed]

S. L. Law, N. Suchowerska, S. C. Fleming, A. S. Beddar, and D. R. McKenzie, in Proc. SPIE 5317, 105 (2004).
[CrossRef]

2002 (1)

R. H. West, in Proc. SPIE 4547, 31 (2002).
[CrossRef]

1993 (1)

S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, Phys. Med. Biol. 38, 945 (1993).
[CrossRef]

1992 (1)

A. S. Beddar, T. R. Mackie, and F. H. Attix, Phys. Med. Biol. 37, 1883 (1992).
[CrossRef] [PubMed]

Andersen, C. E.

M. C. Aznar, C. E. Andersen, L. Botter-Jensen, S. A. J. Back, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, Phys. Med. Biol. 49, 1655 (2004).
[CrossRef] [PubMed]

Attix, F. H.

A. S. Beddar, T. R. Mackie, and F. H. Attix, Phys. Med. Biol. 37, 1883 (1992).
[CrossRef] [PubMed]

Aznar, M. C.

M. C. Aznar, C. E. Andersen, L. Botter-Jensen, S. A. J. Back, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, Phys. Med. Biol. 49, 1655 (2004).
[CrossRef] [PubMed]

Back, S. A. J.

M. C. Aznar, C. E. Andersen, L. Botter-Jensen, S. A. J. Back, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, Phys. Med. Biol. 49, 1655 (2004).
[CrossRef] [PubMed]

Beddar, A. S.

S. L. Law, N. Suchowerska, S. C. Fleming, A. S. Beddar, and D. R. McKenzie, in Proc. SPIE 5317, 105 (2004).
[CrossRef]

S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, Phys. Med. Biol. 38, 945 (1993).
[CrossRef]

A. S. Beddar, T. R. Mackie, and F. H. Attix, Phys. Med. Biol. 37, 1883 (1992).
[CrossRef] [PubMed]

Botter-Jensen, L.

M. C. Aznar, C. E. Andersen, L. Botter-Jensen, S. A. J. Back, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, Phys. Med. Biol. 49, 1655 (2004).
[CrossRef] [PubMed]

de Boer, S. F.

S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, Phys. Med. Biol. 38, 945 (1993).
[CrossRef]

Fleming, S. C.

S. H. Law, S. C. Fleming, D. R. McKenzie, and N. Suchowerska, Appl. Opt. 45, 9151 (2006).
[CrossRef] [PubMed]

S. L. Law, N. Suchowerska, S. C. Fleming, A. S. Beddar, and D. R. McKenzie, in Proc. SPIE 5317, 105 (2004).
[CrossRef]

Kjaer-Kristoffersen, F.

M. C. Aznar, C. E. Andersen, L. Botter-Jensen, S. A. J. Back, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, Phys. Med. Biol. 49, 1655 (2004).
[CrossRef] [PubMed]

Law, S. H.

Law, S. L.

S. L. Law, N. Suchowerska, S. C. Fleming, A. S. Beddar, and D. R. McKenzie, in Proc. SPIE 5317, 105 (2004).
[CrossRef]

Mackie, T. R.

A. S. Beddar, T. R. Mackie, and F. H. Attix, Phys. Med. Biol. 37, 1883 (1992).
[CrossRef] [PubMed]

Mattsson, S.

M. C. Aznar, C. E. Andersen, L. Botter-Jensen, S. A. J. Back, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, Phys. Med. Biol. 49, 1655 (2004).
[CrossRef] [PubMed]

McKenzie, D. R.

S. H. Law, S. C. Fleming, D. R. McKenzie, and N. Suchowerska, Appl. Opt. 45, 9151 (2006).
[CrossRef] [PubMed]

S. L. Law, N. Suchowerska, S. C. Fleming, A. S. Beddar, and D. R. McKenzie, in Proc. SPIE 5317, 105 (2004).
[CrossRef]

Medin, J.

M. C. Aznar, C. E. Andersen, L. Botter-Jensen, S. A. J. Back, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, Phys. Med. Biol. 49, 1655 (2004).
[CrossRef] [PubMed]

Panofsky, W. K. H.

W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd ed. (Addison-Wesley, 1962), p. 494.

Phillips, M.

W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd ed. (Addison-Wesley, 1962), p. 494.

Rawlinson, J. A.

S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, Phys. Med. Biol. 38, 945 (1993).
[CrossRef]

Suchowerska, N.

S. H. Law, S. C. Fleming, D. R. McKenzie, and N. Suchowerska, Appl. Opt. 45, 9151 (2006).
[CrossRef] [PubMed]

S. L. Law, N. Suchowerska, S. C. Fleming, A. S. Beddar, and D. R. McKenzie, in Proc. SPIE 5317, 105 (2004).
[CrossRef]

West, R. H.

R. H. West, in Proc. SPIE 4547, 31 (2002).
[CrossRef]

Appl. Opt. (1)

Phys. Med. Biol. (3)

A. S. Beddar, T. R. Mackie, and F. H. Attix, Phys. Med. Biol. 37, 1883 (1992).
[CrossRef] [PubMed]

M. C. Aznar, C. E. Andersen, L. Botter-Jensen, S. A. J. Back, S. Mattsson, F. Kjaer-Kristoffersen, and J. Medin, Phys. Med. Biol. 49, 1655 (2004).
[CrossRef] [PubMed]

S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, Phys. Med. Biol. 38, 945 (1993).
[CrossRef]

Proc. SPIE (2)

S. L. Law, N. Suchowerska, S. C. Fleming, A. S. Beddar, and D. R. McKenzie, in Proc. SPIE 5317, 105 (2004).
[CrossRef]

R. H. West, in Proc. SPIE 4547, 31 (2002).
[CrossRef]

Other (1)

W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd ed. (Addison-Wesley, 1962), p. 494.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dependence of the angular distribution of Čerenkov transmission on γ, the angle between the particle track and the fiber axis, and Δ n , the core and/or cladding refractive index difference, for a silica-cored fiber.

Fig. 2
Fig. 2

Dependence of the angular distribution of Čerenkov transmission intensity on γ, the angle between the particle track and the fiber core, and particle energy for a silica-cored fiber of Δ n = 0.0169 .

Fig. 3
Fig. 3

Photograph of the apparatus used to measure the dependence of transmitted Čerenkov intensity on optical fiber parameters.

Fig. 4
Fig. 4

Normalized Čerenkov intensity generated in silica-core fibers with core diameters in micrometers as shown as a function of γ, the angle between the particle track and the fiber axis. The knee referred to in the text is indicated.

Fig. 5
Fig. 5

Normalized Čerenkov intensity generated in silica-core fibers with core diameters of 150 μ m (upper) and 100 μ m (lower) as a function of γ, the angle between the particle track and the fiber axis for two particle energies.

Fig. 6
Fig. 6

Peak transmitted intensity as a function of core radius for two electron energies (log–log) with straight line fits of slope 3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I cap = N P 2 π ρ 3 sin γ e 2 4 π 2 ε 0 λ 2 c 2 ( 1 c 2 n co 2 v 2 ) × cos 1 ( v ( n co Δ n ) c cos γ sin γ v 2 n co 2 c 2 ) ,
I cap = N P 2 π ρ 3 sin γ e 2 4 π 2 ε 0 λ 2 c 2 ( 1 1 n co 2 ) × cos 1 ( n co Δ n cos γ sin γ n co 2 1 ) .

Metrics