Abstract

We report the generation of 140fs pulses with a peak power of up to 270kW using a fiber pulse source based on a polarization-maintaining ytterbium-doped fiber amplifier and a semiconductor saturable absorber mirror mode-locked fiber laser seed. The seed laser pulses were amplified and chirped in the fiber amplifier and subsequently compressed in an external transmission grating pair. The use of a polarization-maintaining amplifier addresses nonlinear polarization-induced limitations to the obtainable compressed pulse duration and quality that can arise if isotropic fiber amplification is used. Numerical simulations of the system support the experimental measurements and also confirm the role of fiber dispersion in obtaining high-quality compressed pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, Appl. Phys. B 65, 259 (1997).
    [CrossRef]
  2. T. Schreiber, C. K. Nielsen, B. Ortac, and J. Limpert, Opt. Lett. 31, 574 (2006).
    [CrossRef] [PubMed]
  3. M. Rusu, A. B. Grudinin, and O. G. Okhotnikov, Opt. Express 13, 6390 (2005).
    [CrossRef] [PubMed]
  4. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tunnermann, Opt. Express 11, 3332 (2003).
    [CrossRef] [PubMed]
  5. A. B. Rulkov, M. Vyatkin, S. V. Popov, J. R. Taylor, and V. Gapontsev, Opt. Express 13, 377 (2005).
    [CrossRef] [PubMed]
  6. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  7. "Mira Hp-F ultrafast Ti:sapphire oscillator," http://www.cohr.com/downloads/MiraHP-F_DS_3.pdf.

2006

2005

2003

1997

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, Appl. Phys. B 65, 259 (1997).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Fermann, M. E.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, Appl. Phys. B 65, 259 (1997).
[CrossRef]

Galvanauskas, A.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, Appl. Phys. B 65, 259 (1997).
[CrossRef]

Gapontsev, V.

Grudinin, A. B.

Harter, D.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, Appl. Phys. B 65, 259 (1997).
[CrossRef]

Limpert, J.

Nielsen, C. K.

Nolte, S.

Okhotnikov, O. G.

Ortac, B.

Popov, S. V.

Rulkov, A. B.

Rusu, M.

Schreiber, T.

Sucha, G.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, Appl. Phys. B 65, 259 (1997).
[CrossRef]

Taylor, J. R.

Tunnermann, A.

Vyatkin, M.

Zellmer, H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Autocorrelations and (b) spectra of the compressed pulses in the case in which isotropic amplification is used (the two polarization states are denoted by solid and dash curves).

Fig. 2
Fig. 2

Compression setup with PM amplification.

Fig. 3
Fig. 3

(a) Optimized autocorrelation and (b) spectrum of the linearly polarized compressed pulses.

Fig. 4
Fig. 4

Numerically simulated autocorrelations of the shortest compressed pulse with (dashed) and without (solid) dispersion.

Fig. 5
Fig. 5

Comparison of simulated (solid) and experimental (dashed) compressed autocorrelations. Inset, simulated pulse shape after compression.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i A z + i α 2 A β 2 2 2 A T 2 + γ A 2 A = 0 .

Metrics