Abstract

A modified evanescent-wave fiber-optic fluorometer capable of simultaneous signal enhancement and suppression of stray excitation light is examined. Such a capability is achieved by adjusting the shape of a fluorophore sample droplet and regulating the distance separating the exit of the illuminating fiber and an uncladded segment of the receiving fiber, set perpendicular to each other. The effects of sample attenuation and inhomogeneity are also analyzed and evidenced by associated experiments.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).
    [CrossRef] [PubMed]
  2. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]
  3. E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, Biosens. Bioelectron. 7, 141 (1992).
    [CrossRef] [PubMed]
  4. Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, Biosens. Bioelectron. 11, 137 (1996).
    [CrossRef]
  5. D. Marcuse, J. Lightwave Technol. 6, 1273 (1988).
    [CrossRef]
  6. J. Ma and W. J. Bock, Opt. Express 13, 2385 (2005).
    [CrossRef] [PubMed]
  7. J. Enderlein, T. Ruckstuhl, and S. Seeger, Appl. Opt. 38, 724 (1999).
    [CrossRef]
  8. L. Polerecky, J. Harmle, and B. D. MacCraith, Appl. Opt. 39, 3968 (2000).
    [CrossRef]

2005 (2)

C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).
[CrossRef] [PubMed]

J. Ma and W. J. Bock, Opt. Express 13, 2385 (2005).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

1996 (1)

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, Biosens. Bioelectron. 11, 137 (1996).
[CrossRef]

1992 (1)

E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, Biosens. Bioelectron. 7, 141 (1992).
[CrossRef] [PubMed]

1988 (1)

D. Marcuse, J. Lightwave Technol. 6, 1273 (1988).
[CrossRef]

1971 (1)

Anderson, G. P.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).
[CrossRef] [PubMed]

Bennion, I.

E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, Biosens. Bioelectron. 7, 141 (1992).
[CrossRef] [PubMed]

Bock, W. J.

Carlyon, E. E.

E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, Biosens. Bioelectron. 7, 141 (1992).
[CrossRef] [PubMed]

Enderlein, J.

Gloge, D.

Hale, Z. M.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, Biosens. Bioelectron. 11, 137 (1996).
[CrossRef]

Harmle, J.

Levine, M. M.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, Biosens. Bioelectron. 11, 137 (1996).
[CrossRef]

Ligler, F. S.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).
[CrossRef] [PubMed]

Lowe, C. R.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, Biosens. Bioelectron. 11, 137 (1996).
[CrossRef]

E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, Biosens. Bioelectron. 7, 141 (1992).
[CrossRef] [PubMed]

Ma, J.

MacCraith, B. D.

Marcuse, D.

D. Marcuse, J. Lightwave Technol. 6, 1273 (1988).
[CrossRef]

Marks, R. S.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, Biosens. Bioelectron. 11, 137 (1996).
[CrossRef]

Payne, F. P.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, Biosens. Bioelectron. 11, 137 (1996).
[CrossRef]

Polerecky, L.

Reid, D.

E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, Biosens. Bioelectron. 7, 141 (1992).
[CrossRef] [PubMed]

Ruckstuhl, T.

Seeger, S.

Taitt, C. R.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).
[CrossRef] [PubMed]

Appl. Opt. (3)

Biosens. Bioelectron. (3)

C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).
[CrossRef] [PubMed]

E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, Biosens. Bioelectron. 7, 141 (1992).
[CrossRef] [PubMed]

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, Biosens. Bioelectron. 11, 137 (1996).
[CrossRef]

J. Lightwave Technol. (1)

D. Marcuse, J. Lightwave Technol. 6, 1273 (1988).
[CrossRef]

Opt. Express (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experiments for the proposed sensor. (a) Experimental setup. The fiber tip is positioned in a micro dark chamber. The inset indicates the three positions of the i-fiber for sample excitation. The photographs in (b) and (c) show the sample, the i-fiber, and the r-fiber associated with positions 1 and 2 of (a), respectively.

Fig. 2
Fig. 2

Optimized fluorescent emission spectrum for three i-fiber positions. The units of intensity are based on the sensitivity of the USB2000 spectrometer at 86 photons/count (estimate). (a) and (b) Optimized spectra for sample concentrations of 80 and 10 μ g ml , respectively.

Fig. 3
Fig. 3

Ray tracing for the proposed sensor architecture, (a) Ray tracing associated with Fig. 1b. δ, thickness of the EW layer. (b) Result for a ray skimming over the core surface. (c) Result for a ray with a grazing incident angle. (d) Result for a ray with a smaller incident angle. (e) Ray tracing associated with Fig. 1c.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I F = i = 1 n I F i = K I 0 d 2 ( 1 + R 1 + T 1 T 2 + T 1 R 2 T 3 + + T 1 j = 2 i R j T i ) .
I F = lim n with R < 1 [ K I 0 ( 2 d 2 ) + K I 0 d 2 j = 1 n R j ] = K I 0 ( 2 d 2 ) .

Metrics