Abstract

The optical near field and its polarization anisotropy in transparent nanostructures were studied by polarization near-field optical microscopy. From experimental results and finite-difference time-domain calculations, we conclude that localized optical near fields exist at topographically higher regions of nanostructures under the TE-polarization condition. Optical near fields with a feature size smaller than 100nm are applied for contact photomask lithography. We demonstrate photolithographic patterns with 80nm width by using a 442nm helium cadmium laser.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995).
    [CrossRef]
  2. X. Luo and T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004).
    [CrossRef]
  3. F. Nicholas, L. Hyesog, S. Cheng, and Z. Xiang, Science 308, 534 (2005).
    [CrossRef]
  4. P.-K. Wei, Y. C. Chen, and H.-Li Chou, J. Opt. Soc. Am. B 20, 1503 (2003).
    [CrossRef]
  5. P.-K. Wei, H.-Li Chou, and Y. C. Chen, Opt. Lett. 29, 433 (2004).
    [CrossRef] [PubMed]
  6. D. A. Higgins, D. A. Vanden Bout, J. Kerimo, and P. F. Barbara, J. Phys. Chem. 100, 13794 (1996).
    [CrossRef]
  7. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005).
    [CrossRef] [PubMed]
  8. H. Lochbihler, Phys. Rev. B 50, 4795 (1994).
    [CrossRef]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 39, 667 (1998).
    [CrossRef]
  10. P. K. Wei, S. Y. Chiu, and W. L. Chang, Rev. Sci. Instrum. 73, 2624 (2002).
    [CrossRef]

2005 (2)

F. Nicholas, L. Hyesog, S. Cheng, and Z. Xiang, Science 308, 534 (2005).
[CrossRef]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

2002 (1)

P. K. Wei, S. Y. Chiu, and W. L. Chang, Rev. Sci. Instrum. 73, 2624 (2002).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 39, 667 (1998).
[CrossRef]

1996 (1)

D. A. Higgins, D. A. Vanden Bout, J. Kerimo, and P. F. Barbara, J. Phys. Chem. 100, 13794 (1996).
[CrossRef]

1995 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995).
[CrossRef]

1994 (1)

H. Lochbihler, Phys. Rev. B 50, 4795 (1994).
[CrossRef]

Alkemade, P. F. A.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Barbara, P. F.

D. A. Higgins, D. A. Vanden Bout, J. Kerimo, and P. F. Barbara, J. Phys. Chem. 100, 13794 (1996).
[CrossRef]

Blok, H.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Chang, W. L.

P. K. Wei, S. Y. Chiu, and W. L. Chang, Rev. Sci. Instrum. 73, 2624 (2002).
[CrossRef]

Chen, Y. C.

Cheng, S.

F. Nicholas, L. Hyesog, S. Cheng, and Z. Xiang, Science 308, 534 (2005).
[CrossRef]

Chiu, S. Y.

P. K. Wei, S. Y. Chiu, and W. L. Chang, Rev. Sci. Instrum. 73, 2624 (2002).
[CrossRef]

Chou, H.-Li

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995).
[CrossRef]

Dubois, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 39, 667 (1998).
[CrossRef]

Eliel, E. R.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Gbur, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 39, 667 (1998).
[CrossRef]

Higgins, D. A.

D. A. Higgins, D. A. Vanden Bout, J. Kerimo, and P. F. Barbara, J. Phys. Chem. 100, 13794 (1996).
[CrossRef]

Hyesog, L.

F. Nicholas, L. Hyesog, S. Cheng, and Z. Xiang, Science 308, 534 (2005).
[CrossRef]

Ishihara, T.

X. Luo and T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004).
[CrossRef]

Kerimo, J.

D. A. Higgins, D. A. Vanden Bout, J. Kerimo, and P. F. Barbara, J. Phys. Chem. 100, 13794 (1996).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995).
[CrossRef]

Kuzmin, N.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Lenstra, D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 39, 667 (1998).
[CrossRef]

Lochbihler, H.

H. Lochbihler, Phys. Rev. B 50, 4795 (1994).
[CrossRef]

Luo, X.

X. Luo and T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004).
[CrossRef]

Nicholas, F.

F. Nicholas, L. Hyesog, S. Cheng, and Z. Xiang, Science 308, 534 (2005).
[CrossRef]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995).
[CrossRef]

Schouten, H. F.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

't Hooft, G. W.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 39, 667 (1998).
[CrossRef]

Vanden Bout, D. A.

D. A. Higgins, D. A. Vanden Bout, J. Kerimo, and P. F. Barbara, J. Phys. Chem. 100, 13794 (1996).
[CrossRef]

Visser, T. D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Wei, P. K.

P. K. Wei, S. Y. Chiu, and W. L. Chang, Rev. Sci. Instrum. 73, 2624 (2002).
[CrossRef]

Wei, P.-K.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 39, 667 (1998).
[CrossRef]

Xiang, Z.

F. Nicholas, L. Hyesog, S. Cheng, and Z. Xiang, Science 308, 534 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995).
[CrossRef]

X. Luo and T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

D. A. Higgins, D. A. Vanden Bout, J. Kerimo, and P. F. Barbara, J. Phys. Chem. 100, 13794 (1996).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 39, 667 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

H. Lochbihler, Phys. Rev. B 50, 4795 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

P. K. Wei, S. Y. Chiu, and W. L. Chang, Rev. Sci. Instrum. 73, 2624 (2002).
[CrossRef]

Science (1)

F. Nicholas, L. Hyesog, S. Cheng, and Z. Xiang, Science 308, 534 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated optical distributions for (a) a 500 nm period and (b) a 200 nm period dielectric grating. (c) Normalized optical power on the surface of the 200 nm period grating. (d) Calculated optical distribution for a 200 nm period metallic grating. The incident wavelength is 500 nm .

Fig. 2
Fig. 2

(a) Experimental setup for a collection-mode PM-NSOM. (b) Topographic image and (c) averaged near-field intensity. The sample was a dielectric grating with a 500 nm period and a 200 nm thickness. The incident wavelength was 600 nm . The scale bar is 1 μm .

Fig. 3
Fig. 3

(a) Degree of polarization anisotropy and (b) polarization direction of maximum intensity. The arrows show polarization directions of maximum intensity in topographically higher and lower regions. (c) Cross-sectional plots of polarization anisotropy and polarization direction images in (a).

Fig. 4
Fig. 4

SEM images of masks and photoresist patterns produced by near-field photolithography. The incident wavelength was 442 nm and the wave was TE polarized. (a) Grating photomask. The grating’s period was 200 nm , and the width of the dielectric region was 80 nm . (b) Photoresist pattern. (c) Rod-array photomask. The period was 200 nm , and the diameter of the rods was 90 nm . (d) Photolithographic result.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = I + I 2 + I I 2 cos ( ω + 2 θ ) ,

Metrics