Abstract

We further miniaturize a recently established silver-based negative-index metamaterial design. By comparing transmittance, reflectance, and phase-sensitive time-of-flight experiments with theory, we infer a real part of the refractive index of 0.6 at a 780nm wavelength—which is visible in the laboratory.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss negative-index metamaterial at telecommunication wavelengths

Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden
Opt. Lett. 31(12) 1800-1802 (2006)

Realization of a three-functional-layer negative-index photonic metamaterial

G. Dolling, M. Wegener, and S. Linden
Opt. Lett. 32(5) 551-553 (2007)

Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation

Michael S. Rill, Christine E. Kriegler, Michael Thiel, Georg von Freymann, Stefan Linden, and Martin Wegener
Opt. Lett. 34(1) 19-21 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
    [Crossref] [PubMed]
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004).
    [Crossref] [PubMed]
  3. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
    [Crossref] [PubMed]
  4. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Opt. Lett. 30, 3356 (2005).
    [Crossref]
  5. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Science 312, 892 (2006).
    [Crossref] [PubMed]
  6. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006).
    [Crossref] [PubMed]
  7. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, Opt. Express 13, 4922 (2005).
    [Crossref] [PubMed]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [Crossref]
  9. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
    [Crossref] [PubMed]
  10. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  11. D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
    [Crossref]
  12. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Opt. Express 14, 6778 (2006).
    [Crossref] [PubMed]
  13. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, Nature 438, 335 (2005).
    [Crossref] [PubMed]

2006 (3)

2005 (4)

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, Nature 438, 335 (2005).
[Crossref] [PubMed]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, Opt. Express 13, 4922 (2005).
[Crossref] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Opt. Lett. 30, 3356 (2005).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004).
[Crossref] [PubMed]

2002 (1)

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[Crossref]

Brueck, S. R. J.

Cai, W.

Chettiar, U. K.

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[Crossref]

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Science 312, 892 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006).
[Crossref] [PubMed]

Drachev, V. P.

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Science 312, 892 (2006).
[Crossref] [PubMed]

Fan, W.

Firsov, A. A.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, Nature 438, 335 (2005).
[Crossref] [PubMed]

Geim, A. K.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, Nature 438, 335 (2005).
[Crossref] [PubMed]

Gleeson, H. F.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, Nature 438, 335 (2005).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, Nature 438, 335 (2005).
[Crossref] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[Crossref]

Khrushchev, I. Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, Nature 438, 335 (2005).
[Crossref] [PubMed]

Kildishev, A. V.

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Science 312, 892 (2006).
[Crossref] [PubMed]

Malloy, K. J.

Marko, P.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[Crossref]

Osgood, R. M.

Panoiu, N. C.

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

Petrovic, J.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, Nature 438, 335 (2005).
[Crossref] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

Sarychev, A. K.

Schultz, S.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[Crossref] [PubMed]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[Crossref] [PubMed]

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Science 312, 892 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Science 312, 892 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006).
[Crossref] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004).
[Crossref] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

Yuan, H.

Zhang, S.

Zhang, Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, Nature 438, 335 (2005).
[Crossref] [PubMed]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

Nature (1)

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, Nature 438, 335 (2005).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[Crossref]

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[Crossref]

Phys. Rev. Lett. (2)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[Crossref] [PubMed]

Science (3)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Science 312, 892 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Scheme of the metamaterial and polarization configuration. (b) Unit cell of the structure with definition of parameters: lattice constant a x = a y = 300 nm , w x = 102 nm , w y = 68 nm , t = 40 nm , s = 17 nm , and e x = e y = e = 8 nm . The last parameter describes small deviations from rectangular shape. (c) Top-view electron micrograph of the sample employed in Figs. 2, 3. Inset, magnified view.

Fig. 2
Fig. 2

(a) Measured transmittance (solid) and reflectance (dashed) spectrum of the negative-index metamaterial described in Fig. 1 for the polarization configuration of Fig. 1a. (b) Corresponding theoretical calculation. The same parameters are used in the calculations depicted in Fig. 3.

Fig. 3
Fig. 3

(a) Measured (dots) phase delay versus laser center wavelength for a pulse propagating through the metamaterial sample characterized in Figs. 1, 2 and for the polarization configuration depicted in Fig. 1a. The solid curve is the corresponding theoretical calculation. The dashed horizontal line corresponds to Re ( n ) = 0 .[5] (b) Group delay versus wavelength. (c) Retrieved real (solid) and imaginary (dashed) part of the effective refractive index n. (d) Resulting figure of merit FOM = Re ( n ) Im ( n ) . The same set of sample parameters is used in all calculations shown in Figs. 2, 3.

Metrics