Abstract

We have experimentally investigated pump-to-Stokes intensity noise transfer in both the frequency domain and the time domain in all-fiber single-frequency Brillouin ring lasers. In the high-frequency region (>1MHz), the pump-to-Stokes noise transfer function can be much smaller than unity, indicating that the Brillouin fiber lasers act as an efficient low-pass filter. The maximum noise reduction of 4060dB was observed at antiresonant frequencies that are multiples of half the cavity free spectral range. This is the first experimental demonstration, to the authors’ knowledge, of intensity noise reduction in Brillouin fiber lasers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Boschung, L. Thevenaz, and P. A. Robert, Electron. Lett. 30, 1488 (1994).
    [CrossRef]
  2. S. P. Smith, F. Zarinetchi, and S. Ezekiel, Opt. Lett. 16, 393 (1991).
    [CrossRef] [PubMed]
  3. A. Debut, S. Randoux, and J. Zemmouri, Phys. Rev. A 62, 023803 (2000).
    [CrossRef]
  4. A. Debut, S. Randoux, and J. Zemmouri, J. Opt. Soc. Am. B 18, 556 (2001).
    [CrossRef]
  5. S. P. Bush, A. Gungor, and C. C. Davis, Appl. Phys. Lett. 53, 646 (1988).
    [CrossRef]
  6. Ch. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. Lightwave Technol. 22, 57 (2004).
    [CrossRef]
  7. L. Stepien, S. Randoux, and J. Zemmouri, J. Opt. Soc. Am. B 19, 1055 (2002).
    [CrossRef]
  8. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, IEEE Photon. Technol. Lett. 18, 1813 (2006).
    [CrossRef]

2006 (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, IEEE Photon. Technol. Lett. 18, 1813 (2006).
[CrossRef]

2004 (1)

2002 (1)

2001 (1)

2000 (1)

A. Debut, S. Randoux, and J. Zemmouri, Phys. Rev. A 62, 023803 (2000).
[CrossRef]

1994 (1)

J. Boschung, L. Thevenaz, and P. A. Robert, Electron. Lett. 30, 1488 (1994).
[CrossRef]

1991 (1)

1988 (1)

S. P. Bush, A. Gungor, and C. C. Davis, Appl. Phys. Lett. 53, 646 (1988).
[CrossRef]

Blake, M.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, IEEE Photon. Technol. Lett. 18, 1813 (2006).
[CrossRef]

Boschung, J.

J. Boschung, L. Thevenaz, and P. A. Robert, Electron. Lett. 30, 1488 (1994).
[CrossRef]

Bush, S. P.

S. P. Bush, A. Gungor, and C. C. Davis, Appl. Phys. Lett. 53, 646 (1988).
[CrossRef]

Davis, C. C.

S. P. Bush, A. Gungor, and C. C. Davis, Appl. Phys. Lett. 53, 646 (1988).
[CrossRef]

Debut, A.

A. Debut, S. Randoux, and J. Zemmouri, J. Opt. Soc. Am. B 18, 556 (2001).
[CrossRef]

A. Debut, S. Randoux, and J. Zemmouri, Phys. Rev. A 62, 023803 (2000).
[CrossRef]

Ezekiel, S.

Geng, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, IEEE Photon. Technol. Lett. 18, 1813 (2006).
[CrossRef]

Ch. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. Lightwave Technol. 22, 57 (2004).
[CrossRef]

Gungor, A.

S. P. Bush, A. Gungor, and C. C. Davis, Appl. Phys. Lett. 53, 646 (1988).
[CrossRef]

Hu, Y.

Jiang, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, IEEE Photon. Technol. Lett. 18, 1813 (2006).
[CrossRef]

Ch. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. Lightwave Technol. 22, 57 (2004).
[CrossRef]

Kaneda, Y.

Peyghambarian, N.

Randoux, S.

Robert, P. A.

J. Boschung, L. Thevenaz, and P. A. Robert, Electron. Lett. 30, 1488 (1994).
[CrossRef]

Smith, S. P.

Spiegelberg, Ch.

Staines, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, IEEE Photon. Technol. Lett. 18, 1813 (2006).
[CrossRef]

Stepien, L.

Thevenaz, L.

J. Boschung, L. Thevenaz, and P. A. Robert, Electron. Lett. 30, 1488 (1994).
[CrossRef]

Wang, Z.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, IEEE Photon. Technol. Lett. 18, 1813 (2006).
[CrossRef]

Zarinetchi, F.

Zemmouri, J.

Zong, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, IEEE Photon. Technol. Lett. 18, 1813 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

S. P. Bush, A. Gungor, and C. C. Davis, Appl. Phys. Lett. 53, 646 (1988).
[CrossRef]

Electron. Lett. (1)

J. Boschung, L. Thevenaz, and P. A. Robert, Electron. Lett. 30, 1488 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, IEEE Photon. Technol. Lett. 18, 1813 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Phys. Rev. A (1)

A. Debut, S. Randoux, and J. Zemmouri, Phys. Rev. A 62, 023803 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Typical oscilloscope traces of the pump beam (upper), transmitted pump beam (middle), and Brillouin beam (lower) when a 30 MHz sine wave modulation was applied to the pump laser.

Fig. 3
Fig. 3

Pump-to-Stokes RIN transfer for high-finesse Brillouin fiber laser ( R = 95 % ) at different pump rates.

Fig. 4
Fig. 4

Pump-to-Stokes RIN transfer for low-finesse Brillouin fiber laser ( R = 50 % ) at different pump rates.

Fig. 5
Fig. 5

Transient response of the single-frequency Brillouin fiber laser to a short period of pump off (a) 2 μ s and (b) 100 ns .

Fig. 6
Fig. 6

RIN spectra of both the Brillouin fiber laser ( R = 50 % ) and its pump laser without EO modulation.

Metrics