Abstract

We theoretically propose and experimentally demonstrate the design of a novel one-dimensional ringlike macroscopic optical circuit element. The similarity between morphologies of an optical planar waveguide and a whispering-gallery axially symmetric solid-state resonator is used.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  2. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 2002).
  3. S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, and M.-K. Chin, in Optical Processes in Microcavities, R.K.Chang and A.J.Campillo, eds. (World Scientific, 1996), p. 339.
    [CrossRef]
  4. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  5. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. Rev. A 70, 051804R (2004).
    [CrossRef]
  6. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000).
    [CrossRef]
  7. V. S. Ilchenko, X. S. Yao, and L. Maleki, Opt. Lett. 24, 723 (1999).
    [CrossRef]

2004

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. Rev. A 70, 051804R (2004).
[CrossRef]

2003

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

2002

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 2002).

2000

1999

1996

S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, and M.-K. Chin, in Optical Processes in Microcavities, R.K.Chang and A.J.Campillo, eds. (World Scientific, 1996), p. 339.
[CrossRef]

1987

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Chin, M.-K.

S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, and M.-K. Chin, in Optical Processes in Microcavities, R.K.Chang and A.J.Campillo, eds. (World Scientific, 1996), p. 339.
[CrossRef]

Chu, D. Y.

S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, and M.-K. Chin, in Optical Processes in Microcavities, R.K.Chang and A.J.Campillo, eds. (World Scientific, 1996), p. 339.
[CrossRef]

Gorodetsky, M. L.

Ho, S.-T.

S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, and M.-K. Chin, in Optical Processes in Microcavities, R.K.Chang and A.J.Campillo, eds. (World Scientific, 1996), p. 339.
[CrossRef]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 2002).

Ilchenko, V. S.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Maleki, L.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. Rev. A 70, 051804R (2004).
[CrossRef]

V. S. Ilchenko, X. S. Yao, and L. Maleki, Opt. Lett. 24, 723 (1999).
[CrossRef]

Matsko, A. B.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. Rev. A 70, 051804R (2004).
[CrossRef]

Pryamikov, A. D.

Savchenkov, A. A.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. Rev. A 70, 051804R (2004).
[CrossRef]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Wu, S.

S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, and M.-K. Chin, in Optical Processes in Microcavities, R.K.Chang and A.J.Campillo, eds. (World Scientific, 1996), p. 339.
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Yao, X. S.

Zhang, J.-P.

S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, and M.-K. Chin, in Optical Processes in Microcavities, R.K.Chang and A.J.Campillo, eds. (World Scientific, 1996), p. 339.
[CrossRef]

J. Opt. Soc. Am. B

Nature

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. Rev. A 70, 051804R (2004).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Other

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 2002).

S.-T. Ho, D. Y. Chu, J.-P. Zhang, S. Wu, and M.-K. Chin, in Optical Processes in Microcavities, R.K.Chang and A.J.Campillo, eds. (World Scientific, 1996), p. 339.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(Color online) (a) Structure and mode localization in the optical fiber. Only one propagating mode, shown by the solid arrow, survives in the core of the fiber, while others (dotted arrows) penetrate into the cladding and dissipate. (b) Mode localization in the WGM resonator. The resonator corresponds to a multimode gradient fiber for which the index of refraction is set by the resonator shape, not by the change of the refractive index of the resonator host material, which is constant. Both the fundamental and the auxiliary modes survive. (c) Mode localization in a low-contrast WGM resonator. Only a single-mode family survives. The other modes penetrate into the cylinder rod and dissipate. The coupling to the single-mode family is achieved with, e.g., a cleaved fiber coupler.

Fig. 2
Fig. 2

(Color online) (A) Scanning electron microscope images of the resonator whose spectrum is shown in Fig. 3. The resonator has a nearly Gaussian shape, with 2.5 μ m height and 5 μ m full width at half-maximum. (b) Image of the profile of the resonator shown in (A). (C) Intensity map of the field in the resonator shown in (A) simulated by numerical solution of Eq. (3).

Fig. 3
Fig. 3

(Color online) (A) Spectrum of a nearly ideal single-mode resonator obtained by use of a 980 nm laser as well as cleaved fiber couplers [Fig. 1c]. The mode number is approximately ν = 3 × 10 4 . The low - Q modes on the spectrum background belong to the drum. (b) Spectrum of the multimode resonator made on the same drum ( 2.5 μ m height and 15 μ m width) and detected with the same coupling technique. The resonator is partially visible in the lower right-hand corner of Fig. 2a.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d c o < λ 2 Δ ϵ ,
× ( × E ) k 2 ϵ ( r ) E = 0 ,
2 E r 2 + 2 E z 2 + { k 2 ϵ [ 1 + 2 L ( z ) R 0 ] ν 2 r 2 } E = 0 ,
1 > d λ 2 L 0 ϵ R 0 > 1 2 .

Metrics