Abstract

An elliptical microelectromechanical system (MEMS) membrane mirror is electrostatically actuated to dynamically adjust the optical beam focus and track the axial scanning of the coherence gate in a Doppler optical coherence tomography (DOCT) system at 8kHz. The MEMS mirror is designed to maintain a constant numerical aperture of 0.13 and a spot size of 6.7μm over an imaging depth of 1mm in water, which improves imaging performance in resolving microspheres in gel samples and Doppler shift estimation precision in a flow phantom. The mirror’s small size (1.4mm×1mm) will allow integration with endoscopic MEMS-DOCT for in vivo applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 24, 1221 (1999).
    [CrossRef]
  2. J. M. Schmitt, S. L. Lee, and K. M. Yung, Opt. Commun. 142, 203 (1997).
    [CrossRef]
  3. V. X. D. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, Opt. Lett. 29, 1754 (2004).
    [CrossRef] [PubMed]
  4. M. J. Cobb, X. Liu, and X. D. Li, Opt. Lett. 30, 1680 (2005).
    [CrossRef] [PubMed]
  5. A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, Appl. Phys. Lett. 86, 103902 (2005).
    [CrossRef]
  6. B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, Opt. Commun. 232, 123 (2004).
    [CrossRef]
  7. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, Opt. Express 11, 794 (2003).
    [CrossRef] [PubMed]
  8. P. A. Himmer, D. L. Dickensheets, and R. A. Friholm, Opt. Lett. 26, 1280 (2001).
    [CrossRef]
  9. P. A. Himmer and D. L. Dickensheets, in Proc. SPIE 4983, 296 (2003).
    [CrossRef]
  10. S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, Opt. Express 13, 410 (2005).
    [CrossRef] [PubMed]
  11. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, Opt. Express 13, 10523 (2005).
    [CrossRef] [PubMed]
  12. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, in Proc. SPIE 6079, 312 (2006).
  13. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 1358 (2000).
    [CrossRef]
  14. S. G. Proskurin, Y. He, and R. K. Wang, Opt. Lett. 28, 1227 (2003).
    [CrossRef] [PubMed]

2006

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, in Proc. SPIE 6079, 312 (2006).

2005

2004

B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, Opt. Commun. 232, 123 (2004).
[CrossRef]

V. X. D. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, Opt. Lett. 29, 1754 (2004).
[CrossRef] [PubMed]

2003

2001

2000

1999

1997

J. M. Schmitt, S. L. Lee, and K. M. Yung, Opt. Commun. 142, 203 (1997).
[CrossRef]

Bachman, M.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, Appl. Phys. Lett. 86, 103902 (2005).
[CrossRef]

Boppart, S. A.

Cable, A. E.

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, in Proc. SPIE 6079, 312 (2006).

Chen, Z.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, Appl. Phys. Lett. 86, 103902 (2005).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 1358 (2000).
[CrossRef]

Cobb, M. J.

de Boer, J. F.

Dickensheets, D. L.

B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, Opt. Commun. 232, 123 (2004).
[CrossRef]

P. A. Himmer and D. L. Dickensheets, in Proc. SPIE 4983, 296 (2003).
[CrossRef]

P. A. Himmer, D. L. Dickensheets, and R. A. Friholm, Opt. Lett. 26, 1280 (2001).
[CrossRef]

Divetia, A.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, Appl. Phys. Lett. 86, 103902 (2005).
[CrossRef]

Drexler, W.

Friholm, R. A.

Fujimoto, J. G.

Gordon, M. L.

He, Y.

Himmer, P. A.

B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, Opt. Commun. 232, 123 (2004).
[CrossRef]

P. A. Himmer and D. L. Dickensheets, in Proc. SPIE 4983, 296 (2003).
[CrossRef]

P. A. Himmer, D. L. Dickensheets, and R. A. Friholm, Opt. Lett. 26, 1280 (2001).
[CrossRef]

Hsieh, T. H.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, Appl. Phys. Lett. 86, 103902 (2005).
[CrossRef]

Huber, R.

Ippen, E. P.

Izatt, J. A.

Jiang, J. Y.

Kärtner, F. X.

Lee, S. L.

J. M. Schmitt, S. L. Lee, and K. M. Yung, Opt. Commun. 142, 203 (1997).
[CrossRef]

Li, G. P.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, Appl. Phys. Lett. 86, 103902 (2005).
[CrossRef]

Li, X. D.

Liu, X.

Lo, S.

Marcon, N. E.

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, in Proc. SPIE 6079, 312 (2006).

Mok, A.

Morgner, U.

Munce, N.

Nelson, J. S.

Pekar, J.

Pitris, C.

Proskurin, S. G.

Qi, B.

B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, Opt. Commun. 232, 123 (2004).
[CrossRef]

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, Opt. Express 11, 794 (2003).
[CrossRef] [PubMed]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, in Proc. SPIE 6079, 312 (2006).

Sarunic, M. V.

Saxer, C.

Schmitt, J. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, Opt. Commun. 142, 203 (1997).
[CrossRef]

Seng-Yue, E.

Shen, Q.

Vitkin, I. A.

Wang, R. K.

Wilson, B. C.

Wojtkowski, M.

Xiang, S.

Yang, C.

Yang, V. X. D.

Yazdanfar, S.

Yung, K. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, Opt. Commun. 142, 203 (1997).
[CrossRef]

Zhang, J.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, Appl. Phys. Lett. 86, 103902 (2005).
[CrossRef]

Zhao, Y.

Appl. Phys. Lett.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, Appl. Phys. Lett. 86, 103902 (2005).
[CrossRef]

Opt. Commun.

B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, Opt. Commun. 232, 123 (2004).
[CrossRef]

J. M. Schmitt, S. L. Lee, and K. M. Yung, Opt. Commun. 142, 203 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

P. A. Himmer and D. L. Dickensheets, in Proc. SPIE 4983, 296 (2003).
[CrossRef]

Other

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, in Proc. SPIE 6079, 312 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the MEMS-DOCT system: LS, broadband light source; PC, polarization controller; OC, optical circulator; BPD, balanced photodetector; PM, phase modulator; PMD phase modulator driver; I&Q, in-phase and quadrature demodulator; RSOD, rapid scanning optical delay; SD-1, SD-2, depth and transverse scan drivers, respectively; MS, MEMS scan tip; SS, sample stage; HVA, high-voltage amplifier; AWG, arbitrary waveform generator; COMP, computer. (b) Interferometric image of an elliptical MEMS membrane mirror with a central deflection of 4.7 μ m , with small curvature aberrations near the edge. Bar = 500 μ m . (c) Schematic of the MEMS scan tip optics. MEMS-off focus, S; MEMS-on focus, S .

Fig. 2
Fig. 2

(a) Intensity OCT image of a 0.5% Intralipid suspension obtained while the MEMS membrane was driven by a 0.75 Hz , unsynchronized triangular waveform, showing the sweeping pattern of the focal zone. (b) MEMS-OCT imaging when the focus was tracking the axial scan, showing overall increased signal intensity along the depth. (c) MEMS-off and (d) MEMS-on images of a sparse gel of 4.5 μ m microsphere suspension, with the insets showing magnified regions in the dashed boxes. Bar = 100 μ m .

Fig. 3
Fig. 3

MEMS-DOCT imaging of a flow phantom using Intralipid solution pumped through a 600 μ m diameter tube. Rows I, II, and III: intensity, Doppler shift, and velocity variance images, respectively. Column (a) MEMS off; (b) M-mode imaging with the MEMS membrane driven by a 1.2 Hz , unsynchronized sinusoidal waveform; (c) MEMS membrane driven to track the axial scan.

Fig. 4
Fig. 4

M-mode DOCT images of the 600 μ m diameter flow phantom with MEMS tracking turned on at the middle of the images (a) Intensity, (b) Doppler shift, and (c) velocity variance images [scales are identical to Fig. 3b]. (d) and (e) show the representative mean and standard deviation of the Doppler shift estimates in the flow phantom under MEMS-off (black) and MEMS-on (red) conditions, respectively. Each curve shows the statistics from 50 axial scans. The peak Doppler shift after phase unwrapping agrees with the experimental condition.

Metrics