Abstract

Evanescent field perturbation of an integrated microring resonator is examined as a means of achieving high-fidelity reversible tuning of photonic microcavities over large wavelength ranges. A 1.7% wavelength tuning is achieved through the use of a novel silica fiber probe that provides access to the evanescent field of an air-clad high-index-contrast ring resonator. As the microring is perturbed, the probe–ring distance is found through simultaneous nanometric distance calibration and force measurements. Experimental results agree well with theoretical tuning. Possible microelectromechanical systems implementation of this effect is discussed, as well as avenues for improvement of the tuning range.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, J. Low Temp. Phys. 14, 2260 (1996).
  2. D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, IEEE Photon. Technol. Lett. 17, 336 (2005).
    [CrossRef]
  3. H. M. H. Chong and R. M. De La Rue, IEEE Photon. Technol. Lett. 16, 1528 (2004).
    [CrossRef]
  4. T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, Opt. Express 12, 1437 (2004).
    [CrossRef] [PubMed]
  5. W. M. van Spengen, R. Puers, and I. De Wolf, J. Micromech. Microeng. 12, 702 (2002).
    [CrossRef]
  6. G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, H. L. Tuller, and G. Barbastathis, IEEE Photon. Technol. Lett. 17, 1190 (2005).
    [CrossRef]
  7. G. N. Nielson, ''Micro-opto-mechanical switching and tuning for integrated optical systems,'' Ph.D. thesis (MIT Archives, 2004).
  8. D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces (Oxford U. Press, 1994).
  9. R. S. Tucker, D. Baney, W. Sorin, and C. Flory, IEEE J. Sel. Top. Quantum Electron. 8, 88 (2002).
    [CrossRef]

2005 (2)

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, IEEE Photon. Technol. Lett. 17, 336 (2005).
[CrossRef]

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, H. L. Tuller, and G. Barbastathis, IEEE Photon. Technol. Lett. 17, 1190 (2005).
[CrossRef]

2004 (3)

G. N. Nielson, ''Micro-opto-mechanical switching and tuning for integrated optical systems,'' Ph.D. thesis (MIT Archives, 2004).

H. M. H. Chong and R. M. De La Rue, IEEE Photon. Technol. Lett. 16, 1528 (2004).
[CrossRef]

T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, Opt. Express 12, 1437 (2004).
[CrossRef] [PubMed]

2002 (2)

R. S. Tucker, D. Baney, W. Sorin, and C. Flory, IEEE J. Sel. Top. Quantum Electron. 8, 88 (2002).
[CrossRef]

W. M. van Spengen, R. Puers, and I. De Wolf, J. Micromech. Microeng. 12, 702 (2002).
[CrossRef]

1996 (1)

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, J. Low Temp. Phys. 14, 2260 (1996).

1994 (1)

D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces (Oxford U. Press, 1994).

Aarnio, J.

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, J. Low Temp. Phys. 14, 2260 (1996).

Baker, N.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, IEEE Photon. Technol. Lett. 17, 336 (2005).
[CrossRef]

Baney, D.

R. S. Tucker, D. Baney, W. Sorin, and C. Flory, IEEE J. Sel. Top. Quantum Electron. 8, 88 (2002).
[CrossRef]

Barbastathis, G.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, H. L. Tuller, and G. Barbastathis, IEEE Photon. Technol. Lett. 17, 1190 (2005).
[CrossRef]

Barwicz, T.

Chong, H. M. H.

H. M. H. Chong and R. M. De La Rue, IEEE Photon. Technol. Lett. 16, 1528 (2004).
[CrossRef]

De La Rue, R. M.

H. M. H. Chong and R. M. De La Rue, IEEE Photon. Technol. Lett. 16, 1528 (2004).
[CrossRef]

De Wolf, I.

W. M. van Spengen, R. Puers, and I. De Wolf, J. Micromech. Microeng. 12, 702 (2002).
[CrossRef]

Driessen, A.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, IEEE Photon. Technol. Lett. 17, 336 (2005).
[CrossRef]

Flory, C.

R. S. Tucker, D. Baney, W. Sorin, and C. Flory, IEEE J. Sel. Top. Quantum Electron. 8, 88 (2002).
[CrossRef]

Geuzebroek, D.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, IEEE Photon. Technol. Lett. 17, 336 (2005).
[CrossRef]

Haus, H. A.

Heimala, P.

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, J. Low Temp. Phys. 14, 2260 (1996).

Heinamaki, A.

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, J. Low Temp. Phys. 14, 2260 (1996).

Ippen, E. P.

Katila, P.

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, J. Low Temp. Phys. 14, 2260 (1996).

Kelderman, H.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, IEEE Photon. Technol. Lett. 17, 336 (2005).
[CrossRef]

Klein, E.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, IEEE Photon. Technol. Lett. 17, 336 (2005).
[CrossRef]

Lopez-Royo, F.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, H. L. Tuller, and G. Barbastathis, IEEE Photon. Technol. Lett. 17, 1190 (2005).
[CrossRef]

Nielson, G. N.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, H. L. Tuller, and G. Barbastathis, IEEE Photon. Technol. Lett. 17, 1190 (2005).
[CrossRef]

G. N. Nielson, ''Micro-opto-mechanical switching and tuning for integrated optical systems,'' Ph.D. thesis (MIT Archives, 2004).

Popovic, M. A.

Puers, R.

W. M. van Spengen, R. Puers, and I. De Wolf, J. Micromech. Microeng. 12, 702 (2002).
[CrossRef]

Rakich, P. T.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, H. L. Tuller, and G. Barbastathis, IEEE Photon. Technol. Lett. 17, 1190 (2005).
[CrossRef]

T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, Opt. Express 12, 1437 (2004).
[CrossRef] [PubMed]

Sarid, D.

D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces (Oxford U. Press, 1994).

Seneviratne, D.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, H. L. Tuller, and G. Barbastathis, IEEE Photon. Technol. Lett. 17, 1190 (2005).
[CrossRef]

Smith, H. I.

Sorin, W.

R. S. Tucker, D. Baney, W. Sorin, and C. Flory, IEEE J. Sel. Top. Quantum Electron. 8, 88 (2002).
[CrossRef]

Tucker, R. S.

R. S. Tucker, D. Baney, W. Sorin, and C. Flory, IEEE J. Sel. Top. Quantum Electron. 8, 88 (2002).
[CrossRef]

Tuller, H. L.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, H. L. Tuller, and G. Barbastathis, IEEE Photon. Technol. Lett. 17, 1190 (2005).
[CrossRef]

van Spengen, W. M.

W. M. van Spengen, R. Puers, and I. De Wolf, J. Micromech. Microeng. 12, 702 (2002).
[CrossRef]

Watts, M. R.

IEEE J. Sel. Top. Quantum Electron. (1)

R. S. Tucker, D. Baney, W. Sorin, and C. Flory, IEEE J. Sel. Top. Quantum Electron. 8, 88 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, IEEE Photon. Technol. Lett. 17, 336 (2005).
[CrossRef]

H. M. H. Chong and R. M. De La Rue, IEEE Photon. Technol. Lett. 16, 1528 (2004).
[CrossRef]

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, H. L. Tuller, and G. Barbastathis, IEEE Photon. Technol. Lett. 17, 1190 (2005).
[CrossRef]

J. Low Temp. Phys. (1)

P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, J. Low Temp. Phys. 14, 2260 (1996).

J. Micromech. Microeng. (1)

W. M. van Spengen, R. Puers, and I. De Wolf, J. Micromech. Microeng. 12, 702 (2002).
[CrossRef]

Opt. Express (1)

Other (2)

G. N. Nielson, ''Micro-opto-mechanical switching and tuning for integrated optical systems,'' Ph.D. thesis (MIT Archives, 2004).

D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces (Oxford U. Press, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Through (upper) and drop (lower) responses of the fabricated microring. (b) Computed tuning versus height, z, of the perturbing body above the microring (circles), exponential fit (dashed curve). Schematic of tuning geometry (inset).

Fig. 2
Fig. 2

(a) Diagram of tuning apparatus and fiber-probe fabrication process (inset), (b) Characteristic drop spectra as the probe is advanced toward the microring. Unperturbed (solid curve) and increasing microring perturbation (dashed curve).

Fig. 3
Fig. 3

(a) Measured resonance frequency of ring resonator (from drop response) versus cantilever displacement, (b) Force of probe–ring interaction and (c) force derivative versus position. The sharp discontinuity at 1270 nm indicates snap-down of the probe due to attractive forces.

Fig. 4
Fig. 4

Tuning versus distance from probe snap-down (circles) with exponential fit (dashed curve). Inset, drop measured before (black) and after (gray) a tuning experiment.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ λ Δ n eff n group .

Metrics