Abstract

Evanescent field perturbation of an integrated microring resonator is examined as a means of achieving high-fidelity reversible tuning of photonic microcavities over large wavelength ranges. A 1.7% wavelength tuning is achieved through the use of a novel silica fiber probe that provides access to the evanescent field of an air-clad high-index-contrast ring resonator. As the microring is perturbed, the probe–ring distance is found through simultaneous nanometric distance calibration and force measurements. Experimental results agree well with theoretical tuning. Possible microelectromechanical systems implementation of this effect is discussed, as well as avenues for improvement of the tuning range.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription