Abstract

We demonstrate twin-beam second-harmonic generation from telecommunications wavelengths in an optimized buried reverse proton exchanged planar waveguide made in 2D hexagonally poled LiNbO3. Experiments carried out with a nanosecond narrow-bandwidth, high-power fiber source thoroughly explored the response of the nonlinear photonic crystal device in terms of its power, wavelength, and angle tunability.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Jackel and J. J. Johnson, Electron. Lett. 27, 1360 (1991).
    [CrossRef]
  2. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, Opt. Lett. 27, 179 (2002).
    [CrossRef]
  3. G. Leo, A. Amoroso, L. Colace, G. Assanto, R. V. Roussev, and M. M. Fejer, Opt. Lett. 29, 1778 (2004).
    [CrossRef] [PubMed]
  4. V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
    [CrossRef]
  5. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
    [CrossRef] [PubMed]
  6. R. Roussev, X. Xie, K. Parameswaran, and M. M. Fejer, Proceedings of the 2003 IEEE LEOS Annual Meeting (IEEE, 2003), Vol. 1, p. 338.
    [CrossRef]
  7. Yu. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, J. Opt. Soc. Am. A 15, 1838 (1998).
    [CrossRef]
  8. Yu. N. Korkishko and V. A. Fedorov, Ion Exchange in Single-Crystals for Integrated Optics and Optoelectronics (Cambridge International Science, 1999).
  9. K. Gallo, R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick. C. B. E. Gawith, L. Ming, P. G. R. Smith, and D. J. Richardson, Electron. Lett. 39, 756 (2003).
    [CrossRef]

2004 (1)

2003 (2)

R. Roussev, X. Xie, K. Parameswaran, and M. M. Fejer, Proceedings of the 2003 IEEE LEOS Annual Meeting (IEEE, 2003), Vol. 1, p. 338.
[CrossRef]

K. Gallo, R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick. C. B. E. Gawith, L. Ming, P. G. R. Smith, and D. J. Richardson, Electron. Lett. 39, 756 (2003).
[CrossRef]

2002 (1)

2000 (1)

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

1999 (1)

Yu. N. Korkishko and V. A. Fedorov, Ion Exchange in Single-Crystals for Integrated Optics and Optoelectronics (Cambridge International Science, 1999).

1998 (2)

1991 (1)

J. L. Jackel and J. J. Johnson, Electron. Lett. 27, 1360 (1991).
[CrossRef]

Amoroso, A.

Assanto, G.

Berger, V.

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

Bratfalean, R. T.

K. Gallo, R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick. C. B. E. Gawith, L. Ming, P. G. R. Smith, and D. J. Richardson, Electron. Lett. 39, 756 (2003).
[CrossRef]

Broderick, N. G. R.

K. Gallo, R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick. C. B. E. Gawith, L. Ming, P. G. R. Smith, and D. J. Richardson, Electron. Lett. 39, 756 (2003).
[CrossRef]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Caccavale, F.

Colace, L.

Fedorov, V. A.

Yu. N. Korkishko and V. A. Fedorov, Ion Exchange in Single-Crystals for Integrated Optics and Optoelectronics (Cambridge International Science, 1999).

Yu. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, J. Opt. Soc. Am. A 15, 1838 (1998).
[CrossRef]

Fejer, M. M.

Fujimura, M.

Gallo, K.

K. Gallo, R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick. C. B. E. Gawith, L. Ming, P. G. R. Smith, and D. J. Richardson, Electron. Lett. 39, 756 (2003).
[CrossRef]

Gawith, C. B. E.

K. Gallo, R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick. C. B. E. Gawith, L. Ming, P. G. R. Smith, and D. J. Richardson, Electron. Lett. 39, 756 (2003).
[CrossRef]

Gonella, F.

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Jackel, J. L.

J. L. Jackel and J. J. Johnson, Electron. Lett. 27, 1360 (1991).
[CrossRef]

Johnson, J. J.

J. L. Jackel and J. J. Johnson, Electron. Lett. 27, 1360 (1991).
[CrossRef]

Korkishko, Yu. N.

Yu. N. Korkishko and V. A. Fedorov, Ion Exchange in Single-Crystals for Integrated Optics and Optoelectronics (Cambridge International Science, 1999).

Yu. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, J. Opt. Soc. Am. A 15, 1838 (1998).
[CrossRef]

Kurz, J. R.

Leo, G.

Ming, L.

K. Gallo, R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick. C. B. E. Gawith, L. Ming, P. G. R. Smith, and D. J. Richardson, Electron. Lett. 39, 756 (2003).
[CrossRef]

Morozova, T. M.

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Parameswaran, K.

R. Roussev, X. Xie, K. Parameswaran, and M. M. Fejer, Proceedings of the 2003 IEEE LEOS Annual Meeting (IEEE, 2003), Vol. 1, p. 338.
[CrossRef]

Parameswaran, K. R.

Peacock, A. C.

K. Gallo, R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick. C. B. E. Gawith, L. Ming, P. G. R. Smith, and D. J. Richardson, Electron. Lett. 39, 756 (2003).
[CrossRef]

Richardson, D. J.

K. Gallo, R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick. C. B. E. Gawith, L. Ming, P. G. R. Smith, and D. J. Richardson, Electron. Lett. 39, 756 (2003).
[CrossRef]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Roussev, R.

R. Roussev, X. Xie, K. Parameswaran, and M. M. Fejer, Proceedings of the 2003 IEEE LEOS Annual Meeting (IEEE, 2003), Vol. 1, p. 338.
[CrossRef]

Roussev, R. V.

Route, R. K.

Segato, F.

Smith, P. G. R.

K. Gallo, R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick. C. B. E. Gawith, L. Ming, P. G. R. Smith, and D. J. Richardson, Electron. Lett. 39, 756 (2003).
[CrossRef]

Xie, X.

R. Roussev, X. Xie, K. Parameswaran, and M. M. Fejer, Proceedings of the 2003 IEEE LEOS Annual Meeting (IEEE, 2003), Vol. 1, p. 338.
[CrossRef]

Electron. Lett. (2)

J. L. Jackel and J. J. Johnson, Electron. Lett. 27, 1360 (1991).
[CrossRef]

K. Gallo, R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick. C. B. E. Gawith, L. Ming, P. G. R. Smith, and D. J. Richardson, Electron. Lett. 39, 756 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Other (2)

R. Roussev, X. Xie, K. Parameswaran, and M. M. Fejer, Proceedings of the 2003 IEEE LEOS Annual Meeting (IEEE, 2003), Vol. 1, p. 338.
[CrossRef]

Yu. N. Korkishko and V. A. Fedorov, Ion Exchange in Single-Crystals for Integrated Optics and Optoelectronics (Cambridge International Science, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of the HexLN structure in: (a) real and (b) Fourier space ( G i j being the reciprocal lattice vectors). Also shown is the orientation of the pattern with respect to the Li Nb O 3 crystallographic axes ( x y ) and the angle ( θ ) of the wave vector of the SHG pump beam ( κ ω ) with the symmetry axis. QPM diagrams for noncollinear twin-beam SHG in the (c) symmetric and (d) nonsymmetric cases.

Fig. 2
Fig. 2

Schematic of the SHG setup. The nanosecond source is an all-fiber erbium–ytterbium-doped fiber amplifier master oscillator power amplifier seeded by a directly modulated tunable laser. The IR pump is free-space coupled in the waveguide. A powermeter or an optical spectrum-analyzer (OSA) measures the free-space or fiber butt-coupled outputs of the device.

Fig. 3
Fig. 3

Plots of the QPM pump wavelengths for SHG via G 10 and G 01 as a function of the pump incidence angle. The experimental points (diamonds) were obtained by measuring the device SHG tuning curve for each incidence angle. The dotted lines overlaid on the experimental points are numerical fits from which the waveguide refractive index distribution could be inferred, as discussed in the text. The insets show the SHG tuning curves [i.e., twin-beam SH output power ( P 2 ω ) as a function of pump wavelength ( λ ω ) ] measured at three different FF incidence angles ( θ ext = 0 ° , 1.3°, and 3.8°).

Fig. 4
Fig. 4

External average SH output versus FF input power for 1-beam SHG off degeneracy (circles). The solid curve is a numerical fit on the data (see text). Upper inset, 1-beam (filled circles), and 2-beam (empty circles) free-space SHG tuning curves. The arrow points at the working point for the power tuning measurement. Lower inset, profile of the input FF pulses (rep rate=65 kHz).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η theor = ( κ 0 theor ) 2 = ( 3 π 2 d 33 ) 2 2 ω 2 μ 0 c N ω 2 N 2 ω d eff w eff = 0.26 % W 1 cm 2 ,

Metrics