Abstract

Image formation in a collinear holographic storage system was analyzed. The wavefront from each pixel of a spatial light modulator was regarded as a plane wave in the recording medium, and its wave vector was determined by the position of the pixel. The hologram in the recording medium was treated as the summation of all gratings written by all combinations of two plane waves. The image of a data page was formed by diffraction of the reference waves by all gratings. The results of the simulation showed good agreement with experiment. We introduced the pixel spread function to describe the image formation characteristics. Analysis of the pixel spread function reveals that a radial-line pixel pattern for reference waves gave a sharper image than other reference pixel patterns. It is also shown that a random phase modulation applied to each reference pixel improved the image formation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Horimai, X. D. Tan, J. Li, and K. Suzuki, Jpn. J. Appl. Phys. Part 1 44, 3493 (2005).
    [CrossRef]
  2. H. Horimai and X. D. Tan, Opt. Rev. 12, 90 (2005).
    [CrossRef]
  3. H. Horimai, X. D. Tan, and J. Li, Appl. Opt. 44, 2597 (2005).
    [CrossRef]
  4. C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (SPIE, 2002).
  5. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  6. S. S. Orlov and L. Hesselink, J. Opt. Soc. Am. B 20, 1912 (2003).
    [CrossRef]

2005

H. Horimai, X. D. Tan, J. Li, and K. Suzuki, Jpn. J. Appl. Phys. Part 1 44, 3493 (2005).
[CrossRef]

H. Horimai and X. D. Tan, Opt. Rev. 12, 90 (2005).
[CrossRef]

H. Horimai, X. D. Tan, and J. Li, Appl. Opt. 44, 2597 (2005).
[CrossRef]

2003

2002

C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (SPIE, 2002).

1984

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Becklund, O. A.

C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (SPIE, 2002).

Hesselink, L.

Horimai, H.

H. Horimai, X. D. Tan, J. Li, and K. Suzuki, Jpn. J. Appl. Phys. Part 1 44, 3493 (2005).
[CrossRef]

H. Horimai and X. D. Tan, Opt. Rev. 12, 90 (2005).
[CrossRef]

H. Horimai, X. D. Tan, and J. Li, Appl. Opt. 44, 2597 (2005).
[CrossRef]

Li, J.

H. Horimai, X. D. Tan, J. Li, and K. Suzuki, Jpn. J. Appl. Phys. Part 1 44, 3493 (2005).
[CrossRef]

H. Horimai, X. D. Tan, and J. Li, Appl. Opt. 44, 2597 (2005).
[CrossRef]

Orlov, S. S.

Suzuki, K.

H. Horimai, X. D. Tan, J. Li, and K. Suzuki, Jpn. J. Appl. Phys. Part 1 44, 3493 (2005).
[CrossRef]

Tan, X. D.

H. Horimai, X. D. Tan, J. Li, and K. Suzuki, Jpn. J. Appl. Phys. Part 1 44, 3493 (2005).
[CrossRef]

H. Horimai, X. D. Tan, and J. Li, Appl. Opt. 44, 2597 (2005).
[CrossRef]

H. Horimai and X. D. Tan, Opt. Rev. 12, 90 (2005).
[CrossRef]

Williams, C. S.

C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (SPIE, 2002).

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Appl. Opt.

H. Horimai, X. D. Tan, and J. Li, Appl. Opt. 44, 2597 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys. Part 1

H. Horimai, X. D. Tan, J. Li, and K. Suzuki, Jpn. J. Appl. Phys. Part 1 44, 3493 (2005).
[CrossRef]

Opt. Rev.

H. Horimai and X. D. Tan, Opt. Rev. 12, 90 (2005).
[CrossRef]

Other

C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (SPIE, 2002).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Model for image-formation analysis in the collinear holographic storage system. (a) Optical system, (b) arrangement of pixels in the spatial light modulator.

Fig. 2
Fig. 2

Comparisons between calculated and experimental results. (a) Calculated and (b) experimental results of the image for a radial-line reference pattern. (c) Calculated and (d) experimental results of the image for a multiple-ring reference pattern.

Fig. 3
Fig. 3

Diffracted light pattern produced by a single grating written by a data pixel at the center and a reference pixel indicated by the circle. (a) Multiple-ring, (b) radial-line, and (c) random reference patterns. The diffracted patterns are (a) a solid line, (b) a dotted line, and (c) a random dotted line corresponding to the illumination pattern.

Fig. 4
Fig. 4

Calculated intensity of the PxSF (a) without and (b) with random phase modulation. •, multiple-ring; ×, radial-line; ◻, random reference patterns.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k i j = ( k 0 x i f , k 0 y j f , [ ( n k 0 ) 2 ( k 0 x i f ) 2 ( k 0 y j f ) 2 ] 1 2 ) ,
Δ k z = ( k k l z + K k l i j z ) [ ( n k 0 ) 2 k ( k + i k ) , ( l + j l ) x 2 k ( k + i k ) , ( l + j l ) y 2 ] 1 2 .
k k , l K i j k l K i j k l 2 ,

Metrics