Abstract

Theoretical and experimental results have shown that mode power distribution (MPD) variations could significantly vary the phase of spectral fringes from multimode fiber extrinsic Fabry–Perot interferometric (MMF-EFPI) sensor systems, owing to the fact that different modes introduce different extra phase shifts resulting from the coupling of modes reflected at the second surface to the lead-in fiber end. This dependence of fringe pattern on MPD could cause measurement errors in signal demodulation methods of white-light MMF-EFPI sensors that implement the phase information of the fringes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, Electron. Lett. 32, 247 (1996).
    [CrossRef]
  2. M. Han, Y. Zhang, F. Shen, G. Pickrell, and A. Wang, Opt. Lett. 29, 1736 (2004).
    [CrossRef] [PubMed]
  3. M. Han and A. Wang, Appl. Opt. 43, 4659 (2004).
    [CrossRef] [PubMed]
  4. J. N. Kutz, J. A. Cox, and D. Smith, J. Lightwave Technol. 16, 1195 (1998).
    [CrossRef]
  5. D. Gloge, Appl. Opt. 11, 2506 (1972).
    [CrossRef] [PubMed]
  6. M. Ikeda, Y. Murakami, and K. Kitayama, Appl. Opt. 16, 1045 (1977).
    [PubMed]
  7. D. Marcuse, Bell Syst. Tech. J. 54, 1507 (1975).
  8. S. Sumida, H. Murata, and Y. Katsuyama, J. Lightwave Technol. LT-2, 642 (1984).
    [CrossRef]

2004 (2)

1998 (1)

1996 (1)

V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, Electron. Lett. 32, 247 (1996).
[CrossRef]

1984 (1)

S. Sumida, H. Murata, and Y. Katsuyama, J. Lightwave Technol. LT-2, 642 (1984).
[CrossRef]

1977 (1)

1975 (1)

D. Marcuse, Bell Syst. Tech. J. 54, 1507 (1975).

1972 (1)

Bhatia, V.

V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, Electron. Lett. 32, 247 (1996).
[CrossRef]

Claus, R. O.

V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, Electron. Lett. 32, 247 (1996).
[CrossRef]

Cox, J. A.

Gloge, D.

Han, M.

Ikeda, M.

Katsuyama, Y.

S. Sumida, H. Murata, and Y. Katsuyama, J. Lightwave Technol. LT-2, 642 (1984).
[CrossRef]

Kitayama, K.

Kutz, J. N.

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 54, 1507 (1975).

Murakami, Y.

Murata, H.

S. Sumida, H. Murata, and Y. Katsuyama, J. Lightwave Technol. LT-2, 642 (1984).
[CrossRef]

Murphy, K. A.

V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, Electron. Lett. 32, 247 (1996).
[CrossRef]

Pickrell, G.

Sen, M. B.

V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, Electron. Lett. 32, 247 (1996).
[CrossRef]

Shen, F.

Smith, D.

Sumida, S.

S. Sumida, H. Murata, and Y. Katsuyama, J. Lightwave Technol. LT-2, 642 (1984).
[CrossRef]

Wang, A.

Zhang, Y.

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

D. Marcuse, Bell Syst. Tech. J. 54, 1507 (1975).

Electron. Lett. (1)

V. Bhatia, M. B. Sen, K. A. Murphy, and R. O. Claus, Electron. Lett. 32, 247 (1996).
[CrossRef]

J. Lightwave Technol. (2)

S. Sumida, H. Murata, and Y. Katsuyama, J. Lightwave Technol. LT-2, 642 (1984).
[CrossRef]

J. N. Kutz, J. A. Cox, and D. Smith, J. Lightwave Technol. 16, 1195 (1998).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a MMF-EFPI sensor head.

Fig. 2
Fig. 2

Phase and amplitude of mode coupling coefficients for gap lengths d = 20 and 50 μ m .

Fig. 3
Fig. 3

Phase shift φ eff of fringe as a function of gap-length d of the FP cavity. The inset shows the fringe patterns when d = 40 μ m . Solid curve, all modes equally excited; dashed curve, SMF illumination; dotted curve, LP 0 , 1 mode excited only.

Fig. 4
Fig. 4

Experimental setup to verify the MPD dependence of fringe patterns in a MMF-EFPI sensor.

Fig. 5
Fig. 5

Fringe patterns obtained by the OSA. Top, central, and bottom fringes correspond to fiber conditions of no perturbation, smaller, and larger lateral pressure, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( d , λ ) 1 + 2 1 + η R 2 k = 1 N p k 2 η k cos ( φ 0 + φ k ) .
η k = R 1 ϕ k ϕ k * d s .
η eff = η eff exp ( i φ eff ) = k = 1 N p k 2 η k ,
I ( d , λ ) 1 + 2 1 + η R 2 η eff cos ( 4 π d λ + π + φ eff ) .

Metrics