Abstract

It is demonstrated for stationary fields that when the polarization state of the electric field can be modified arbitrarily the maximal value of the modulus of the degree of coherence proposed by Wolf [Phys. Lett. A 312, 263 (2003) ] is equal to the largest intrinsic degree of coherence. In addition, when the light is a mixing of a coherent light that satisfies the factorization condition in the two spatial variables with a statistically uncorrelated, partially coherent, perfectly polarized light, but with a nonparallel polarization state, we show that the polarization modifications that maximize the modulus of the Wolf degree of coherence lead to a light that also satisfies the factorization condition.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, Phys. Lett. A 312, 263 (2003).
    [CrossRef]
  2. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, J. Opt. Soc. Am. A 20, 78 (2003).
    [CrossRef]
  3. J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003).
    [CrossRef] [PubMed]
  4. T. Setälä, J. Tervo, and A. T. Friberg, Opt. Lett. 29, 328 (2004).
    [CrossRef] [PubMed]
  5. Ph. Réfrégier, Opt. Lett. 30, 3117 (2005).
    [CrossRef] [PubMed]
  6. Ph. Réfrégier and F. Goudail, Opt. Express 13, 6051 (2005).
    [CrossRef] [PubMed]
  7. R. J. Glauber, Phys. Rev. 130, 2529 (1963).
    [CrossRef]
  8. J. W. Goodman, in Statistical Optics (Wiley, 1985), pp. 116-156.
  9. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

2005 (2)

2004 (1)

2003 (3)

1995 (1)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

1985 (1)

J. W. Goodman, in Statistical Optics (Wiley, 1985), pp. 116-156.

1963 (1)

R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[CrossRef]

Borghi, R.

Friberg, A. T.

Glauber, R. J.

R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[CrossRef]

Goodman, J. W.

J. W. Goodman, in Statistical Optics (Wiley, 1985), pp. 116-156.

Gori, F.

Goudail, F.

Guattari, G.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Piquero, G.

Réfrégier, Ph.

Santarsiero, M.

Setälä, T.

Simon, R.

Tervo, J.

Wolf, E.

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett. (2)

Phys. Lett. A (1)

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

Phys. Rev. (1)

R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[CrossRef]

Other (2)

J. W. Goodman, in Statistical Optics (Wiley, 1985), pp. 116-156.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Ω ( r 1 , r 2 , t 2 t 1 ) = E ( r 2 , t 2 ) E ( r 1 , t 1 )
W ( r 1 , r 2 , ν ) = Ω ( r 1 , r 2 , τ ) exp ( i 2 π ν τ ) d τ .
W ( r 1 , r 2 , ν ) = Ψ ( r 2 , ν ) Ψ ( r 1 , ν ) ,
η ( r 1 , r 2 , ν ) = tr [ W ( r 1 , r 2 , ν ) ] tr [ S ( r 1 , ν ) ] tr [ S ( r 2 , ν ) ] .
M ( r 1 , r 2 , ν ) = S 1 2 ( r 2 , ν ) W ( r 1 , r 2 , ν ) S 1 2 ( r 1 , ν ) ,
η ( r 1 , r 2 , ν ) = ω ( r 1 , r 2 , ν ) ω ( r 1 , r 1 , ν ) ω ( r 2 , r 2 , ν )
ω u ( r 1 , r 2 , ν ) = φ ( r 2 , ν ) φ * ( r 1 , ν ) .
η x ( r 1 , r 2 , ν ) = ω x ( r 1 , r 2 , ν ) ω x ( r 1 , r 1 , ν ) ω x ( r 2 , r 2 , ν ) ,
W E ( r 1 , r 2 , ν ) = C ( r 2 , ν ) D ( r 1 , r 2 , ν ) C ( r 1 , ν ) ,
η ( r 1 , r 2 , ν ) = k 2 ( r 1 , r 2 , ν ) D ( r 1 , r 2 , ν ) k 1 ( r 1 , r 2 , ν ) k 1 ( r 1 , r 2 , ν ) k 2 ( r 1 , r 2 , ν ) .
ω ( r 1 , r 2 , ν ) = e 1 T [ C 1 ( r 2 , ν ) ] W E ( r 1 , r 2 , ν ) C 1 ( r 1 , ν ) e 1 C 1 ( r 1 , ν ) e 1 C 1 ( r 2 , ν ) e 1 .
ω ( r 1 , r 2 , ν ) = ω u ( r 1 , r 2 , ν ) ( ω u ( r 1 , r 1 , ν ) C 1 ( r 1 , ν ) e 1 ) ( ω u ( r 2 , r 2 , ν ) C 1 ( r 2 , ν ) e 1 ) .
ω ( r 1 , r 2 , ν ) = ψ ( r 2 , ν ) ψ * ( r 1 , ν ) ,
B i = [ a i b i c i d i ] ,

Metrics