Abstract

The characterization and control of the phase of broadband femtosecond pulses in nonlinear microscopy are successfully demonstrated with a collinear configuration of spectral shear interferometry for direct electric field reconstruction (SPIDER). A femtosecond-pulse shaper is used as a dispersionless interferometer for the measurement of the spectral phase and to actively compress a broadband supercontinuum from a photonic crystal fiber. This allows in situ online phase management and enables the application of quantum control spectroscopy in microenvironments.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
    [CrossRef] [PubMed]
  2. J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
    [CrossRef]
  3. P. St. J. Russell, Science 299, 358 (2003).
    [CrossRef] [PubMed]
  4. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, R. Trebino, S. Coen, and R. S. Windeler, Opt. Express 10, 1215 (2002).
    [PubMed]
  5. M. Adachi, K. Yamane, R. Morita, and M. Yamashita, IEEE Photon. Technol. Lett. 16, 1951 (2004).
    [CrossRef]
  6. B. Schenkel, R. Paschotta, and U. Keller, J. Opt. Soc. Am. B 22, 687 (2005).
    [CrossRef]
  7. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  8. D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, Opt. Lett. 23, 1046 (1998).
    [CrossRef]
  9. V. V. Lozovoy, I. Pastirk, and M. Dantus, Opt. Lett. 29, 775 (2004).
    [CrossRef] [PubMed]
  10. A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, Opt. Lett. 28, 278 (2003).
    [CrossRef] [PubMed]
  11. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  12. T. M. Shuman, M. E. Anderson, J. Bromage, C. Iaconis, L. Waxer, and I. A. Walmsley, Opt. Express 5, 134 (1999).
    [CrossRef] [PubMed]
  13. C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
    [CrossRef]
  14. P. Baum, S. Lochbrunner, and E. Riedle, Opt. Lett. 29, 210 (2004).
    [CrossRef] [PubMed]
  15. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.- L. Kompa, Science 288, 824 (2000).
    [CrossRef] [PubMed]
  16. H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, Biochem. Biophys. Res. Commun. 311, 592 (2003).
    [CrossRef] [PubMed]
  17. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, J. Phys. Chem. A 108, 53 (2004).
    [CrossRef]
  18. N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
    [CrossRef] [PubMed]
  19. B. von Vacano, W. Wohlleben, and M. Motzkus, Opt. Lett. 31, 413 (2006).
    [CrossRef] [PubMed]

2006 (1)

2005 (1)

2004 (5)

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

M. Adachi, K. Yamane, R. Morita, and M. Yamashita, IEEE Photon. Technol. Lett. 16, 1951 (2004).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, J. Phys. Chem. A 108, 53 (2004).
[CrossRef]

P. Baum, S. Lochbrunner, and E. Riedle, Opt. Lett. 29, 210 (2004).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, Opt. Lett. 29, 775 (2004).
[CrossRef] [PubMed]

2003 (4)

A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, Opt. Lett. 28, 278 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[CrossRef] [PubMed]

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, Biochem. Biophys. Res. Commun. 311, 592 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

2002 (2)

2000 (2)

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.- L. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

1999 (2)

1998 (2)

Adachi, M.

M. Adachi, K. Yamane, R. Morita, and M. Yamashita, IEEE Photon. Technol. Lett. 16, 1951 (2004).
[CrossRef]

Anderson, M. E.

Barty, C. P. J.

Baum, P.

Bromage, J.

Cheng, J. X.

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

Coen, S.

Dantus, M.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, J. Phys. Chem. A 108, 53 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, and M. Dantus, Opt. Lett. 29, 775 (2004).
[CrossRef] [PubMed]

de Vivie-Riedle, R.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.- L. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Dela Cruz, J. M.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, J. Phys. Chem. A 108, 53 (2004).
[CrossRef]

Dudley, J. M.

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Fittinghoff, D. N.

Gu, X.

Herzog, R.

Iaconis, C.

Joffre, M.

Kaplan, D.

Kawano, H.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, Biochem. Biophys. Res. Commun. 311, 592 (2003).
[CrossRef] [PubMed]

Keller, U.

Kimmel, M.

Kompa, K.- L.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.- L. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Lochbrunner, S.

Lozovoy, V. V.

V. V. Lozovoy, I. Pastirk, and M. Dantus, Opt. Lett. 29, 775 (2004).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, J. Phys. Chem. A 108, 53 (2004).
[CrossRef]

Midorikawa, K.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, Biochem. Biophys. Res. Commun. 311, 592 (2003).
[CrossRef] [PubMed]

Miyawaki, A.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, Biochem. Biophys. Res. Commun. 311, 592 (2003).
[CrossRef] [PubMed]

Mizuno, H.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, Biochem. Biophys. Res. Commun. 311, 592 (2003).
[CrossRef] [PubMed]

Monmayrant, A.

Morita, R.

M. Adachi, K. Yamane, R. Morita, and M. Yamashita, IEEE Photon. Technol. Lett. 16, 1951 (2004).
[CrossRef]

Motzkus, M.

B. von Vacano, W. Wohlleben, and M. Motzkus, Opt. Lett. 31, 413 (2006).
[CrossRef] [PubMed]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.- L. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Muller, M.

Nabekawa, Y.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, Biochem. Biophys. Res. Commun. 311, 592 (2003).
[CrossRef] [PubMed]

Oishi, Y.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, Biochem. Biophys. Res. Commun. 311, 592 (2003).
[CrossRef] [PubMed]

Oksenhendler, T.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

O'Shea, P.

Paschotta, R.

Pastirk, I.

V. V. Lozovoy, I. Pastirk, and M. Dantus, Opt. Lett. 29, 775 (2004).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, J. Phys. Chem. A 108, 53 (2004).
[CrossRef]

Rabitz, H.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.- L. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Riedle, E.

Russell, P. St. J.

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Schenkel, B.

Shuman, T. M.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Squier, J. A.

Suda, A.

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, Biochem. Biophys. Res. Commun. 311, 592 (2003).
[CrossRef] [PubMed]

Sweetser, J. N.

Tournois, P.

Trebino, R.

von Vacano, B.

Walmsley, I. A.

Walowicz, K. A.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, J. Phys. Chem. A 108, 53 (2004).
[CrossRef]

Waxer, L.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[CrossRef] [PubMed]

Weiner, A. M.

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[CrossRef] [PubMed]

Windeler, R. S.

Wohlleben, W.

Xie, X. S.

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

Xu, L.

Yamane, K.

M. Adachi, K. Yamane, R. Morita, and M. Yamashita, IEEE Photon. Technol. Lett. 16, 1951 (2004).
[CrossRef]

Yamashita, M.

M. Adachi, K. Yamane, R. Morita, and M. Yamashita, IEEE Photon. Technol. Lett. 16, 1951 (2004).
[CrossRef]

Zeek, E.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[CrossRef] [PubMed]

Biochem. Biophys. Res. Commun. (1)

H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, Biochem. Biophys. Res. Commun. 311, 592 (2003).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Adachi, K. Yamane, R. Morita, and M. Yamashita, IEEE Photon. Technol. Lett. 16, 1951 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, J. Phys. Chem. A 108, 53 (2004).
[CrossRef]

J. Phys. Chem. B (1)

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[CrossRef] [PubMed]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (6)

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Science (2)

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.- L. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Shaping target in the time domain to generate a double pulse with separation τ = 300 fs . (b) Corresponding frequency domain modulation M ̃ SLM ( ω ) with amplitude A SLM ( ω ) and phase φ SLM ( ω ) as realized by the pixelated SLM in the Fourier plane of the 4 f pulse shaper. Only a section of the 640 pixel range is shown.

Fig. 2
Fig. 2

(Color online) Experimental setup. After a Faraday isolator (FI), a supercontinuum is generated in a PCF and sent into the fs-pulse shaper (G1–2; gratings, SM1–2, spherical mirrors). The shaped beam is collinearly superimposed with an orthogonally polarized, chirped ( ϕ ) reference beam and focused into the sample. (MO1–2, microscope objectives). The SFG signal generated in a type-II BBO crystal is finally analyzed in a spectrograph (FL, focusing lens).

Fig. 3
Fig. 3

(Color online) Sum-frequency generation SAC-SPIDER interferogram of uncompressed supercontinuum for a test pulse doublet with separation τ = 900 fs and a chirped reference beam with ϕ = 37 , 000 fs 2 .

Fig. 4
Fig. 4

(Color online) SAC-SPIDER supercontinuum compression. (a) Spectrum (gray shaded area) and reconstructed spectral phases before compression (dashed curve) and after the first (dashed–dotted curve), second (dotted curve), and third (solid curve) iterations of feedback SPIDER compression. (b) Retrieved temporal pulse shape and phase before compression and (c) after three iterations.

Metrics