Abstract

The dispersive nature of the acousto-optical deflector (AOD) presents a challenge to applications of two sequential orthogonal AODs (a two-dimensional AOD) as XY scanners in multiphoton microscopy. Introducing a prism before the two-dimensional (2D) AOD allows both temporal and spatial dispersion to be compensated for simultaneously. A 90fs laser pulse was broadened to 572fs without compensation, and 143fs with compensation. The ratio of long axis to short axis of the exiting laser beam spot was 3.50 without compensation and 1.14 with compensation. The insertion loss was 37%. Two-photon fluorescence microscopy used the compensated 2D AOD scanner to image a fluorescent microsphere, which improves signal intensity ~15-fold compared with the uncompensated scanner.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Svoboda and W. Denk, Neuron Neuron 18, 351 (1997).
    [CrossRef] [PubMed]
  2. S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, J. Microsc. 157, 29 (1990).
    [CrossRef] [PubMed]
  3. A. Bullen, S. S. Patel, and P. Saggau, Biophys. J. 73, 477 (1997).
    [CrossRef] [PubMed]
  4. J. D. Lechleiter, D. T. Lin, and I. Sieneart, Biophys. J. 83, 2296 (2002).
    [CrossRef]
  5. R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, J. Neurophysiol. 92, 609 (2004).
    [CrossRef] [PubMed]
  6. V. Iyer, B. E. Losavio, and P. Saggau, J. Biomed. Opt. 8, 460 (2003).
    [CrossRef] [PubMed]
  7. V. Iyer, T. Hoogland, B. E. Losavio, R. Fink, R. Gaddi, S. Patel, A. Larson, and P. Saggau, in Proc. SPIE 5700, 90 (2005).
    [CrossRef]
  8. R. L. Fork, O. E. Martinez, and J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [CrossRef] [PubMed]
  9. M. Nakazawa, T. Nakashima, and H. Kubota, Opt. Lett. 13, 120 (1988).
    [CrossRef] [PubMed]
  10. B. K. A. Ngoi, K. Venkatakrishnan, B. Tan, P. Stanley, and L. E. N. Lin, Opt. Express 9, 200 (2001).
    [CrossRef] [PubMed]
  11. W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), p. 92.

2005 (1)

V. Iyer, T. Hoogland, B. E. Losavio, R. Fink, R. Gaddi, S. Patel, A. Larson, and P. Saggau, in Proc. SPIE 5700, 90 (2005).
[CrossRef]

2004 (1)

R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, J. Neurophysiol. 92, 609 (2004).
[CrossRef] [PubMed]

2003 (1)

V. Iyer, B. E. Losavio, and P. Saggau, J. Biomed. Opt. 8, 460 (2003).
[CrossRef] [PubMed]

2002 (1)

J. D. Lechleiter, D. T. Lin, and I. Sieneart, Biophys. J. 83, 2296 (2002).
[CrossRef]

2001 (1)

1997 (2)

A. Bullen, S. S. Patel, and P. Saggau, Biophys. J. 73, 477 (1997).
[CrossRef] [PubMed]

K. Svoboda and W. Denk, Neuron Neuron 18, 351 (1997).
[CrossRef] [PubMed]

1990 (1)

S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, J. Microsc. 157, 29 (1990).
[CrossRef] [PubMed]

1988 (1)

1984 (1)

Bullen, A.

A. Bullen, S. S. Patel, and P. Saggau, Biophys. J. 73, 477 (1997).
[CrossRef] [PubMed]

Denk, W.

K. Svoboda and W. Denk, Neuron Neuron 18, 351 (1997).
[CrossRef] [PubMed]

Fink, R.

V. Iyer, T. Hoogland, B. E. Losavio, R. Fink, R. Gaddi, S. Patel, A. Larson, and P. Saggau, in Proc. SPIE 5700, 90 (2005).
[CrossRef]

Fork, R. L.

Gaddi, R.

V. Iyer, T. Hoogland, B. E. Losavio, R. Fink, R. Gaddi, S. Patel, A. Larson, and P. Saggau, in Proc. SPIE 5700, 90 (2005).
[CrossRef]

Goldstein, S. R.

S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, J. Microsc. 157, 29 (1990).
[CrossRef] [PubMed]

Gordon, J. P.

Hohl, T. M.

R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, J. Neurophysiol. 92, 609 (2004).
[CrossRef] [PubMed]

Hoogland, T.

V. Iyer, T. Hoogland, B. E. Losavio, R. Fink, R. Gaddi, S. Patel, A. Larson, and P. Saggau, in Proc. SPIE 5700, 90 (2005).
[CrossRef]

Hubin, T.

S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, J. Microsc. 157, 29 (1990).
[CrossRef] [PubMed]

Iyer, V.

V. Iyer, T. Hoogland, B. E. Losavio, R. Fink, R. Gaddi, S. Patel, A. Larson, and P. Saggau, in Proc. SPIE 5700, 90 (2005).
[CrossRef]

V. Iyer, B. E. Losavio, and P. Saggau, J. Biomed. Opt. 8, 460 (2003).
[CrossRef] [PubMed]

Kubota, H.

Larson, A.

V. Iyer, T. Hoogland, B. E. Losavio, R. Fink, R. Gaddi, S. Patel, A. Larson, and P. Saggau, in Proc. SPIE 5700, 90 (2005).
[CrossRef]

Lechleiter, J. D.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, Biophys. J. 83, 2296 (2002).
[CrossRef]

Lin, D. T.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, Biophys. J. 83, 2296 (2002).
[CrossRef]

Lin, L. E. N.

Losavio, B. E.

V. Iyer, T. Hoogland, B. E. Losavio, R. Fink, R. Gaddi, S. Patel, A. Larson, and P. Saggau, in Proc. SPIE 5700, 90 (2005).
[CrossRef]

V. Iyer, B. E. Losavio, and P. Saggau, J. Biomed. Opt. 8, 460 (2003).
[CrossRef] [PubMed]

Martinez, O. E.

Miesenbock, G.

R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, J. Neurophysiol. 92, 609 (2004).
[CrossRef] [PubMed]

Nakashima, T.

Nakazawa, M.

Ngoi, B. K. A.

Patel, S.

V. Iyer, T. Hoogland, B. E. Losavio, R. Fink, R. Gaddi, S. Patel, A. Larson, and P. Saggau, in Proc. SPIE 5700, 90 (2005).
[CrossRef]

Patel, S. S.

A. Bullen, S. S. Patel, and P. Saggau, Biophys. J. 73, 477 (1997).
[CrossRef] [PubMed]

Roorda, R. D.

R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, J. Neurophysiol. 92, 609 (2004).
[CrossRef] [PubMed]

Rosenthal, S.

S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, J. Microsc. 157, 29 (1990).
[CrossRef] [PubMed]

Saggau, P.

V. Iyer, T. Hoogland, B. E. Losavio, R. Fink, R. Gaddi, S. Patel, A. Larson, and P. Saggau, in Proc. SPIE 5700, 90 (2005).
[CrossRef]

V. Iyer, B. E. Losavio, and P. Saggau, J. Biomed. Opt. 8, 460 (2003).
[CrossRef] [PubMed]

A. Bullen, S. S. Patel, and P. Saggau, Biophys. J. 73, 477 (1997).
[CrossRef] [PubMed]

Sieneart, I.

J. D. Lechleiter, D. T. Lin, and I. Sieneart, Biophys. J. 83, 2296 (2002).
[CrossRef]

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), p. 92.

Stanley, P.

Svoboda, K.

K. Svoboda and W. Denk, Neuron Neuron 18, 351 (1997).
[CrossRef] [PubMed]

Tan, B.

Toledo-Crow, R.

R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, J. Neurophysiol. 92, 609 (2004).
[CrossRef] [PubMed]

Venkatakrishnan, K.

Washburn, C.

S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, J. Microsc. 157, 29 (1990).
[CrossRef] [PubMed]

Biophys. J. (2)

A. Bullen, S. S. Patel, and P. Saggau, Biophys. J. 73, 477 (1997).
[CrossRef] [PubMed]

J. D. Lechleiter, D. T. Lin, and I. Sieneart, Biophys. J. 83, 2296 (2002).
[CrossRef]

J. Biomed. Opt. (1)

V. Iyer, B. E. Losavio, and P. Saggau, J. Biomed. Opt. 8, 460 (2003).
[CrossRef] [PubMed]

J. Microsc. (1)

S. R. Goldstein, T. Hubin, S. Rosenthal, and C. Washburn, J. Microsc. 157, 29 (1990).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock, J. Neurophysiol. 92, 609 (2004).
[CrossRef] [PubMed]

Neuron (1)

K. Svoboda and W. Denk, Neuron Neuron 18, 351 (1997).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

V. Iyer, T. Hoogland, B. E. Losavio, R. Fink, R. Gaddi, S. Patel, A. Larson, and P. Saggau, in Proc. SPIE 5700, 90 (2005).
[CrossRef]

Other (1)

W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), p. 92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a, Basic principle of compensation with a prism–AOD pair. With compensation, the first diffraction order is collimated. b, Beam spot distortion by the 2D AOD. c, Compensated 2D AOD, with a 45 ° tilted prism and two orthogonal AODs. d, Complete 2D AOD scanning system.

Fig. 2
Fig. 2

Normalized autocorrelation waveforms from output of the laser source (curve 1; pulse width, 90 fs ) after the 2D AOD without prism compensation (curve 3, 572 fs ) and with prism compensation (curve 2, 143 fs ). ( 1 ms in autocorrelation waveforms corresponds to a 265 fs pulse width.)

Fig. 3
Fig. 3

Laser beam spots scanned onto a grid and recorded on a screen 3.75 m from the scanner ( 4 cm horizontal × 4 cm vertical spacing) in this FOV ( 16 cm × 12 cm ) : a, Without compensation, the elliptical ratio is 3.50 ± 0.10 . b, With compensation, the elliptical ratio is 1.14 ± 0.08 . The two images share the same color bar.

Fig. 4
Fig. 4

Images of a fluorescent 0.5 μ m diameter bead obtained with two-photon fluorescent microscopy by use of, a, a standard galvo scanner (FV1000, Olympus); b, a 2D AOD scanner; c, a 2D AOD with prism compensation. Image b uses a more-sensitive color bar. d, Fluorescence profile along the marked diagonal line for these images: 1, original; 2, uncompensated; 3, compensated. FWHM, 1.0 μ m for curves 1 and 3, 1.5 μ m for curve 2. The same excitation laser power reaches the sample for all images. Objective: 60 × ; NA 1.42; Olympus.

Metrics