Abstract

We use the Born approximation of the radiative transport equation to recover simultaneously the absorption and scattering coefficients in a single layer of a two-layer tissue sample from reflectance data. This method reduces the estimation of both optical properties to a single linear, least-squares problem. It is valid over length scales smaller than a transport mean free path and hence is useful for epithelial tissue layers. We demonstrate the accuracy of this method by using spatially resolved reflectance data computed with Monte Carlo simulations.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, Appl. Opt. 37, 7401 (1998).
    [CrossRef]
  2. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, Appl. Opt. 37, 7447 (1998).
    [CrossRef]
  3. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagneièrs, and H. van den Bergh, Appl. Opt. 37, 779 (1998).
    [CrossRef]
  4. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, IEEE J. Sel. Top. Quantum Electron. 5, 1019 (1999).
    [CrossRef]
  5. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, Opt. Lett. 29, 1087 (2004).
    [CrossRef] [PubMed]
  6. A. D. Kim, J. Opt. Soc. Am. A 21, 797 (2004).
    [CrossRef]
  7. A. D. Kim, Waves Random Complex Media 15, 17 (2005).
    [CrossRef]
  8. R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Yadir, and B. J. Tromberg, Hum. Reprod. 14, 2908 (1999).
    [CrossRef] [PubMed]
  9. A. K. Dunn and D. A. Boas, Opt. Lett. 25, 1777 (2000).
    [CrossRef]
  10. M. Xu, W. Cai, M. Lax, and R. R. Alfano, Opt. Lett. 26, 1066 (2001).
    [CrossRef]

2005

A. D. Kim, Waves Random Complex Media 15, 17 (2005).
[CrossRef]

2004

2001

2000

1999

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, IEEE J. Sel. Top. Quantum Electron. 5, 1019 (1999).
[CrossRef]

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Yadir, and B. J. Tromberg, Hum. Reprod. 14, 2908 (1999).
[CrossRef] [PubMed]

1998

Alexandrakis, G.

Alfano, R. R.

Amelink, A.

Backman, V.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, IEEE J. Sel. Top. Quantum Electron. 5, 1019 (1999).
[CrossRef]

Badizadegan, K.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, IEEE J. Sel. Top. Quantum Electron. 5, 1019 (1999).
[CrossRef]

Bard, M. P. L.

Bays, R.

Berns, M. W.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Yadir, and B. J. Tromberg, Hum. Reprod. 14, 2908 (1999).
[CrossRef] [PubMed]

Boas, D. A.

Burgers, S. A.

Cai, W.

Dasari, R. R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, IEEE J. Sel. Top. Quantum Electron. 5, 1019 (1999).
[CrossRef]

Dögnitz, N.

Dunn, A. K.

Fantini, S.

Farrell, T J.

Feld, M. S.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, IEEE J. Sel. Top. Quantum Electron. 5, 1019 (1999).
[CrossRef]

Franceschini, M. A.

Gratton, E.

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, IEEE J. Sel. Top. Quantum Electron. 5, 1019 (1999).
[CrossRef]

Hornung, R.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Yadir, and B. J. Tromberg, Hum. Reprod. 14, 2908 (1999).
[CrossRef] [PubMed]

Itzkan, I.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, IEEE J. Sel. Top. Quantum Electron. 5, 1019 (1999).
[CrossRef]

Keefe, K. A.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Yadir, and B. J. Tromberg, Hum. Reprod. 14, 2908 (1999).
[CrossRef] [PubMed]

Kienle, A.

Kim, A. D.

A. D. Kim, Waves Random Complex Media 15, 17 (2005).
[CrossRef]

A. D. Kim, J. Opt. Soc. Am. A 21, 797 (2004).
[CrossRef]

Lax, M.

Maier, J. S.

Patterson, M. S.

Paunescu, L. A.

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, IEEE J. Sel. Top. Quantum Electron. 5, 1019 (1999).
[CrossRef]

Pham, T. H.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Yadir, and B. J. Tromberg, Hum. Reprod. 14, 2908 (1999).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

Tromberg, B. J.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Yadir, and B. J. Tromberg, Hum. Reprod. 14, 2908 (1999).
[CrossRef] [PubMed]

van den Bergh, H.

Wagneièrs, G.

Xu, M.

Yadir, Y.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Yadir, and B. J. Tromberg, Hum. Reprod. 14, 2908 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematics of (a) top-layer and (b) bottom-layer perturbations.

Fig. 2
Fig. 2

Estimates of μ a ( ) and μ s ( ) by the BA method for top-layer perturbations in (a) μ a and (b) μ s . The optical properties of the bottom layer are known a priori to be μ a 0 and μ s 0 .

Fig. 3
Fig. 3

Estimates of μ a ( ) and μ s ( ) by the BA method for bottom-layer perturbations in (a) μ a and (b) μ s . The optical properties of the top layer are known a priori to be μ a 0 and μ s 0 .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ω Ψ + μ a Ψ μ s L Ψ = Q .
L Ψ = Ψ + S 2 f ( ω ω ) Ψ ( ω , r ) d ω .
G ω , z = 0 = R ( ω ) G ω , z = 0 , ω z ̂ > 0 .
μ a , s ( r ) = μ a 0 , s 0 + δ μ a , s ( r ) ,
Ψ Ψ B = Ψ 0 G D [ δ μ a Ψ 0 ] + G D [ δ μ s L Ψ 0 ] ,
G D [ u ] = D S 2 G ( ω , r ; ω , r ) u ( ω , r ) d ω d r .
F B t , b ( ρ ) = F 0 ( ρ ) δ μ a F a t , b ( ρ ) + δ μ s F s t , b ( ρ ) ,
F 0 ( ρ ) = S NA 2 ω z ̂ Ψ 0 ( ω , ρ , 0 ) d ω ,
F a t , b ( ρ ) = S NA 2 ω z ̂ G D t , b [ Ψ 0 ] ( ω , ρ , 0 ) d ω ,
F s t , b ( ρ ) = S NA 2 ω z ̂ G D t , b [ L Ψ 0 ] ( ω , ρ , 0 ) d ω .
A t , b [ δ μ a δ μ s ] = y .

Metrics