Abstract

A novel laser-optical fiber Bragg grating anemometer (FBGA) has been devised for measuring the speed of a moving gas in the range 01.5ms1. As a test, the FBGA was applied to measuring the speed of the electric wind generated in the particularly harsh, high-voltage environment of a dc, negative-polarity, partial (corona) discharge in atmospheric air. The instrument proved more stable and yielded an order-of-magnitude improvement in sensitivity (Δv4×103ms1) compared with other optical-fiber-based anemometers. On-axis wind speeds ranging from zero to 1.1ms1 were measured in the vicinity of the corona discharge.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Bobb, J. P. Davis, A. Samouris, and D. C. Larson, in Proc. SPIE 1169, 567 (1990).
  2. D. W. Lamb and G. A. Woolsey, Appl. Opt. 34, 1608 (1995).
    [Crossref] [PubMed]
  3. A. Hooper and D. W. Lamb, J. Phys Conf. Ser. 15, 219 (2005).
    [Crossref]
  4. B. J. Ashton, J. Canning, and N. Groothoff, Appl. Opt. 41, 3140 (2000).
  5. A. Hooper, 'Measuring the speed of corona wind using optical fibre sensors,' B.S honours thesis (University of New England, Armidale, 2005).
  6. P. Bécquin, K. Castor, and J. Sholten, Eur. Phys. J.: Appl. Phys. 22, 41 (2003).
    [Crossref]
  7. N. G. Douglas, I. S. Falconer, and J. J. Lowke, J. Phys. D 15, 665 (1982).
    [Crossref]

2005 (1)

A. Hooper and D. W. Lamb, J. Phys Conf. Ser. 15, 219 (2005).
[Crossref]

2003 (1)

P. Bécquin, K. Castor, and J. Sholten, Eur. Phys. J.: Appl. Phys. 22, 41 (2003).
[Crossref]

2000 (1)

B. J. Ashton, J. Canning, and N. Groothoff, Appl. Opt. 41, 3140 (2000).

1995 (1)

1990 (1)

L. C. Bobb, J. P. Davis, A. Samouris, and D. C. Larson, in Proc. SPIE 1169, 567 (1990).

1982 (1)

N. G. Douglas, I. S. Falconer, and J. J. Lowke, J. Phys. D 15, 665 (1982).
[Crossref]

Ashton, B. J.

B. J. Ashton, J. Canning, and N. Groothoff, Appl. Opt. 41, 3140 (2000).

Bécquin, P.

P. Bécquin, K. Castor, and J. Sholten, Eur. Phys. J.: Appl. Phys. 22, 41 (2003).
[Crossref]

Bobb, L. C.

L. C. Bobb, J. P. Davis, A. Samouris, and D. C. Larson, in Proc. SPIE 1169, 567 (1990).

Canning, J.

B. J. Ashton, J. Canning, and N. Groothoff, Appl. Opt. 41, 3140 (2000).

Castor, K.

P. Bécquin, K. Castor, and J. Sholten, Eur. Phys. J.: Appl. Phys. 22, 41 (2003).
[Crossref]

Davis, J. P.

L. C. Bobb, J. P. Davis, A. Samouris, and D. C. Larson, in Proc. SPIE 1169, 567 (1990).

Douglas, N. G.

N. G. Douglas, I. S. Falconer, and J. J. Lowke, J. Phys. D 15, 665 (1982).
[Crossref]

Falconer, I. S.

N. G. Douglas, I. S. Falconer, and J. J. Lowke, J. Phys. D 15, 665 (1982).
[Crossref]

Groothoff, N.

B. J. Ashton, J. Canning, and N. Groothoff, Appl. Opt. 41, 3140 (2000).

Hooper, A.

A. Hooper and D. W. Lamb, J. Phys Conf. Ser. 15, 219 (2005).
[Crossref]

A. Hooper, 'Measuring the speed of corona wind using optical fibre sensors,' B.S honours thesis (University of New England, Armidale, 2005).

Lamb, D. W.

A. Hooper and D. W. Lamb, J. Phys Conf. Ser. 15, 219 (2005).
[Crossref]

D. W. Lamb and G. A. Woolsey, Appl. Opt. 34, 1608 (1995).
[Crossref] [PubMed]

Larson, D. C.

L. C. Bobb, J. P. Davis, A. Samouris, and D. C. Larson, in Proc. SPIE 1169, 567 (1990).

Lowke, J. J.

N. G. Douglas, I. S. Falconer, and J. J. Lowke, J. Phys. D 15, 665 (1982).
[Crossref]

Samouris, A.

L. C. Bobb, J. P. Davis, A. Samouris, and D. C. Larson, in Proc. SPIE 1169, 567 (1990).

Sholten, J.

P. Bécquin, K. Castor, and J. Sholten, Eur. Phys. J.: Appl. Phys. 22, 41 (2003).
[Crossref]

Woolsey, G. A.

Appl. Opt. (2)

D. W. Lamb and G. A. Woolsey, Appl. Opt. 34, 1608 (1995).
[Crossref] [PubMed]

B. J. Ashton, J. Canning, and N. Groothoff, Appl. Opt. 41, 3140 (2000).

Eur. Phys. J.: Appl. Phys. (1)

P. Bécquin, K. Castor, and J. Sholten, Eur. Phys. J.: Appl. Phys. 22, 41 (2003).
[Crossref]

J. Phys Conf. Ser. (1)

A. Hooper and D. W. Lamb, J. Phys Conf. Ser. 15, 219 (2005).
[Crossref]

J. Phys. D (1)

N. G. Douglas, I. S. Falconer, and J. J. Lowke, J. Phys. D 15, 665 (1982).
[Crossref]

Proc. SPIE (1)

L. C. Bobb, J. P. Davis, A. Samouris, and D. C. Larson, in Proc. SPIE 1169, 567 (1990).

Other (1)

A. Hooper, 'Measuring the speed of corona wind using optical fibre sensors,' B.S honours thesis (University of New England, Armidale, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the negative corona generating apparatus and FBGA assembly for measuring the speed of the corona wind. For calibration of the FBGA, the high voltage (h.v.) electrode was replaced with a hollow nozzle through which air was introduced at various flow speeds. sync. synchronization; dvm, digital voltmeter.

Fig. 2
Fig. 2

Example of a dual-oscilloscope trace, showing CO 2 laser pulses (top) and FBGA output (bottom). Vertical scales, 2 V division ( CO 2 pulses), 2 mV division (FBGA output). Horizontal scale, 0.2 s division . Both heating and cooling attenuation pulses are visible on the FGBA output trace.

Fig. 3
Fig. 3

Anemometer calibration curve obtained by subjecting the heated FBG to known flow speeds of gas.

Fig. 4
Fig. 4

Measured corona wind speed as a function of applied gap voltage (negative kilovolts). Fiber placed on axis, 10 mm below the point electrode. Discharge gap, 20 mm .

Metrics