Abstract

Standing-wave total-internal-reflection fluorescence (SW-TIRF) microscopy uses a super-diffraction-limited standing evanescent wave to extract the high-spatial-frequency content of an object through a diffraction-limited optical imaging system. The effective point-spread function is better than a quarter of the emission wavelength. With a 1.45 numerical aperture objective and 532 nm excitation wavelength, a Rayleigh resolution of approximately 100 nm can be achieved, which is better than twice the resolution of conventional TIRF microscopy. This first experimental realization of SW-TIRF in an objective-launched geometry demonstrates the potential for extended resolution imaging at high speed by using wide-field microscopy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
    [CrossRef] [PubMed]
  2. S. Hell and J. WichmannOpt. Lett. 19, 780 (1994).
    [CrossRef] [PubMed]
  3. M. Dyba and S. Hell, Phys. Rev. Lett. 88, 163901 (2002).
    [CrossRef] [PubMed]
  4. M. G. Gustafsson, Proc. Natl. Acad. Sci. U.S.A. 102, 13081 (2005)
    [CrossRef] [PubMed]
  5. M. G. Gustafsson, J. Microsc. (Oxford) 198 (Pt. 2), 82 (2000).
    [CrossRef]
  6. J. T. Frohn, H. F. Knapp, and A. Stemmer, Proc. Natl. Acad. Sci. U.S.A. 97, 7232 (2000).
    [CrossRef] [PubMed]
  7. R. Fedosseev, Y. Belyaev, J. Frohn, and A. Stemmer, Opt. Lasers Eng. 43, 403 (2005).
    [CrossRef]
  8. G. Cragg and P. T. So, Opt. Lett. 25, 46 (2000).
    [CrossRef]
  9. P. T. So, H. S. Kwon, and C. Y. Dong, J. Opt. Soc. Am. A 18, 2833 (2001).
    [CrossRef]
  10. D. Axelrod, Traffic 2, 764 (2001).
    [CrossRef] [PubMed]
  11. H. Schneckenburger, Curr. Opin. Biotechnol. 16, 13 (2005).
    [CrossRef] [PubMed]
  12. P. E. Hanninen, S. W. Hell, J. Salo, and E. Soini, Appl. Phys. Lett. 66, 1698 (1995).
    [CrossRef]

2005 (4)

Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
[CrossRef] [PubMed]

M. G. Gustafsson, Proc. Natl. Acad. Sci. U.S.A. 102, 13081 (2005)
[CrossRef] [PubMed]

R. Fedosseev, Y. Belyaev, J. Frohn, and A. Stemmer, Opt. Lasers Eng. 43, 403 (2005).
[CrossRef]

H. Schneckenburger, Curr. Opin. Biotechnol. 16, 13 (2005).
[CrossRef] [PubMed]

2002 (1)

M. Dyba and S. Hell, Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef] [PubMed]

2001 (2)

2000 (3)

G. Cragg and P. T. So, Opt. Lett. 25, 46 (2000).
[CrossRef]

M. G. Gustafsson, J. Microsc. (Oxford) 198 (Pt. 2), 82 (2000).
[CrossRef]

J. T. Frohn, H. F. Knapp, and A. Stemmer, Proc. Natl. Acad. Sci. U.S.A. 97, 7232 (2000).
[CrossRef] [PubMed]

1995 (1)

P. E. Hanninen, S. W. Hell, J. Salo, and E. Soini, Appl. Phys. Lett. 66, 1698 (1995).
[CrossRef]

1994 (1)

Axelrod, D.

D. Axelrod, Traffic 2, 764 (2001).
[CrossRef] [PubMed]

Belyaev, Y.

R. Fedosseev, Y. Belyaev, J. Frohn, and A. Stemmer, Opt. Lasers Eng. 43, 403 (2005).
[CrossRef]

Cragg, G.

Dong, C. Y.

Dyba, M.

M. Dyba and S. Hell, Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef] [PubMed]

Fedosseev, R.

R. Fedosseev, Y. Belyaev, J. Frohn, and A. Stemmer, Opt. Lasers Eng. 43, 403 (2005).
[CrossRef]

Frohn, J.

R. Fedosseev, Y. Belyaev, J. Frohn, and A. Stemmer, Opt. Lasers Eng. 43, 403 (2005).
[CrossRef]

Frohn, J. T.

J. T. Frohn, H. F. Knapp, and A. Stemmer, Proc. Natl. Acad. Sci. U.S.A. 97, 7232 (2000).
[CrossRef] [PubMed]

Garini, Y.

Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
[CrossRef] [PubMed]

Gustafsson, M. G.

M. G. Gustafsson, Proc. Natl. Acad. Sci. U.S.A. 102, 13081 (2005)
[CrossRef] [PubMed]

M. G. Gustafsson, J. Microsc. (Oxford) 198 (Pt. 2), 82 (2000).
[CrossRef]

Hanninen, P. E.

P. E. Hanninen, S. W. Hell, J. Salo, and E. Soini, Appl. Phys. Lett. 66, 1698 (1995).
[CrossRef]

Hell, S.

Hell, S. W.

P. E. Hanninen, S. W. Hell, J. Salo, and E. Soini, Appl. Phys. Lett. 66, 1698 (1995).
[CrossRef]

Knapp, H. F.

J. T. Frohn, H. F. Knapp, and A. Stemmer, Proc. Natl. Acad. Sci. U.S.A. 97, 7232 (2000).
[CrossRef] [PubMed]

Kwon, H. S.

Salo, J.

P. E. Hanninen, S. W. Hell, J. Salo, and E. Soini, Appl. Phys. Lett. 66, 1698 (1995).
[CrossRef]

Schneckenburger, H.

H. Schneckenburger, Curr. Opin. Biotechnol. 16, 13 (2005).
[CrossRef] [PubMed]

So, P. T.

Soini, E.

P. E. Hanninen, S. W. Hell, J. Salo, and E. Soini, Appl. Phys. Lett. 66, 1698 (1995).
[CrossRef]

Stemmer, A.

R. Fedosseev, Y. Belyaev, J. Frohn, and A. Stemmer, Opt. Lasers Eng. 43, 403 (2005).
[CrossRef]

J. T. Frohn, H. F. Knapp, and A. Stemmer, Proc. Natl. Acad. Sci. U.S.A. 97, 7232 (2000).
[CrossRef] [PubMed]

Vermolen, B. J.

Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
[CrossRef] [PubMed]

Wichmann, J.

Young, I. T.

Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

P. E. Hanninen, S. W. Hell, J. Salo, and E. Soini, Appl. Phys. Lett. 66, 1698 (1995).
[CrossRef]

Curr. Opin. Biotechnol. (2)

H. Schneckenburger, Curr. Opin. Biotechnol. 16, 13 (2005).
[CrossRef] [PubMed]

Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
[CrossRef] [PubMed]

J. Microsc. (Oxford) (1)

M. G. Gustafsson, J. Microsc. (Oxford) 198 (Pt. 2), 82 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lasers Eng. (1)

R. Fedosseev, Y. Belyaev, J. Frohn, and A. Stemmer, Opt. Lasers Eng. 43, 403 (2005).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

M. Dyba and S. Hell, Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

M. G. Gustafsson, Proc. Natl. Acad. Sci. U.S.A. 102, 13081 (2005)
[CrossRef] [PubMed]

J. T. Frohn, H. F. Knapp, and A. Stemmer, Proc. Natl. Acad. Sci. U.S.A. 97, 7232 (2000).
[CrossRef] [PubMed]

Traffic (1)

D. Axelrod, Traffic 2, 764 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the objective-launched SW-TIRF microscope.

Fig. 2
Fig. 2

Effective PSFs of (a) standard TIRF, (b) one-directional SW-TIRF, and (c) SW-TIRF with linear deconvolution. The vertical profiles reveal a narrower PSF FWHM for SW-TIRF compared with standard TIRF. The pixel resolution is 23.9 nm.

Fig. 3
Fig. 3

Improvement of lateral resolution by two-directional SW-TIRF microscopy. (a) Conventional TIRF image; (b) two-directional SW-TIRF image with linear deconvolution.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = O ( x ) [ E ( x ) P ( x ) ] .
I ( r , φ ) = O ( r ) [ E ( r , φ ) P ( r ) ] ,
I ( r ) = 1 2 π 0 2 π I ( r , φ ) d φ = O ( r ) [ P ( r ) 1 2 π 0 2 π E ( r , φ ) d φ ] = O ( r ) [ P ( r ) E ( r ) ] .
E ( r ) = 1 π 0 π E ( k r cos φ ) d φ ,
E ( r ) = 1 N i = 0 N 1 E ( k r cos i π N ) .

Metrics