Abstract

Spatially resolved reflectance close to source has received a great deal of attention recently. This research is considered to develop a new noninvasive technique for measuring the optical properties of biological media. Using Monte Carlo simulations, we investigated the influence of third-order parameter δ on diffuse reflectance and found that the reflectance decreased with an increase of δ at a short source–detector separation of approximately 0.7–2 transport mean free paths. We show that the effects of two parameters, γ and second-order parameter δ, on the reflectance are contrary. As a result the influence of the second-order parameter γ on the reflectance is irregular when the condition ΔδΔγ is not satisfied.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kienle and M. S. Patterson, J. Opt. Soc. Am. A 14, 246-254 (1997).
    [CrossRef]
  2. F. Bevilaqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, Appl. Opt. 38, 4939 (1999).
    [CrossRef]
  3. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, Appl. Opt. 35, 2304 (1996).
    [CrossRef] [PubMed]
  4. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, Opt. Lett. 21, 546 (1996).
    [CrossRef] [PubMed]
  5. F. Bevilacqua and C. Depeursinge, J. Opt. Soc. Am. A 16, 2935 (1999).
    [CrossRef]
  6. A. Kienle, F. K. Forster, and R. Hibst, Opt. Lett. 15, 1571 (2001).
    [CrossRef]
  7. E. L. Hull and T. H. Foster, J. Opt. Soc. Am. A 18, 584 (2001).
    [CrossRef]
  8. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, and A. E. Sichirollo, Appl. Opt. 28, 2318 (1989).
    [CrossRef] [PubMed]
  9. H. C. van de Hulst, Multiple Light Scattering; Tables, Formulas, and Applications (Academic, 1980), Vol. II.
    [PubMed]
  10. L. Wang, S. L. Jacques, and L. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
    [CrossRef] [PubMed]

2001 (2)

A. Kienle, F. K. Forster, and R. Hibst, Opt. Lett. 15, 1571 (2001).
[CrossRef]

E. L. Hull and T. H. Foster, J. Opt. Soc. Am. A 18, 584 (2001).
[CrossRef]

1999 (2)

1997 (1)

1996 (2)

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

1989 (1)

Andreola, S.

Bertoni, A.

Bevilacqua, F.

Bevilaqua, F.

Bigio, I. J.

Boyer, J.

Depeursinge, C.

Forster, F. K.

A. Kienle, F. K. Forster, and R. Hibst, Opt. Lett. 15, 1571 (2001).
[CrossRef]

Foster, T. H.

Gross, J. D.

Hibst, R.

Hielscher, A. H.

Hull, E. L.

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

Kienle, A.

Lilge, L.

Marchesini, R.

Marquet, P.

Melloni, E.

Mourant, J. R.

Patterson, M. S.

Piguet, D.

Sichirollo, A. E.

Steiner, R.

Tromberg, B. J.

van de Hulst, H. C.

H. C. van de Hulst, Multiple Light Scattering; Tables, Formulas, and Applications (Academic, 1980), Vol. II.
[PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

Wilson, B. C.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Relationships between γ and g 1 for p H G ( θ ) , p M H G ( θ ) , and p zee ( θ ) phase functions.

Fig. 2
Fig. 2

Spatially resolved diffuse reflectance decreases with decreasing γ: (a) R MC ( ρ ) with different γ values and almost identical δ, (b) percent deviation from diffusion approximation R D A ( ρ ) .

Fig. 3
Fig. 3

Spatially resolved diffuse reflectance increases with decreasing δ: (a) R M C ( ρ ) with different δ values and fixed γ = 1.0 , (b) percent deviation from diffusion approximation R D A ( ρ )

Fig. 4
Fig. 4

(a) Joint effects of γ and δ on spatially resolved diffuse reflectance. (b) Percent differences between the curves of R M C ( ρ ) .

Tables (1)

Tables Icon

Table 1 Expressions of Parameters g 1 , γ , and δ for Different Phase Functions

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p MHG ( cos θ , g HG , α ) = α p HG ( cos θ , g HG ) + ( 1 α ) 3 2 cos θ ,
p zee ( cos θ , g HG 1 , g HG 2 , α ) = α p HG ( cos θ , g HG 1 ) + ( 1 α ) p HG ( cos θ , g HG 2 ) ,
p HG ( cos θ , g HG ) = 0.5 ( 1 g HG 2 ) ( 1 + g HG 2 2 g HG cos θ ) 3 2

Metrics